My talk concerns non-planar traveling wave solutions of the equation $u_t - \Delta u = f(x - cte, u), t \in \mathbb{R}^+, x \in \mathcal{O}$, where $c > 0$ is the given speed of propagation, $e$ is a unit vector in $\mathbb{R}^N$, $1 \leq p \leq N$, $u(t, x) : (\mathbb{R}^+, \mathcal{O}) \to \mathbb{R}$, $f : (\mathcal{O}, \mathbb{R}) \to \mathbb{R}$, and $\mathcal{O}$ denotes a general cylindrical domain or the whole space $\mathbb{R}^N$. I will focus on discussing the uniqueness and large time behavior of the front in $L^\infty$ and $L^p$. 