The Weizmann Institute of Science Faculty of Mathematics and Computer Science Mathematical Analysis and Applications Seminar Seminar Room, Room 261, Ziskind Building on Tuesday, November 29, 2011 11:00 - noon Note the unusual location Edriss S. Titi will speak on On the Loss of Regularity for the Three-Dimensional Euler Equations Abstract: A basic example of shear flow was introduced by DiPerna and Majda to study the weak limit of oscillatory solutions of the Euler equations of incompressible ideal fluids. In particular, they proved by means of this example that weak limit of solutions of Euler equations may, in some cases, fail to be a solution of Euler equations. We use this shear flow example to provide non-generic, yet nontrivial, examples concerning the immediate loss of smoothness and ill-posedness of solutions of the three-dimensional Euler equations, for initial data that do not belong to $C^{1,\alpha}$. Moreover, we show by means of this shear flow example the existence of weak solutions for the three-dimensional Euler equations with vorticity that is having a nontrivial density concentrated on non-smooth surface. This is very different from what has been proven for the two-dimensional Kelvin-Helmholtz problem where a minimal regularity implies the real analyticity of the interface. Eventually, we use this shear flow to provide explicit examples of non-regular solutions of the three-dimensional Euler equations that conserve the energy, an issue which is related to the Onsager conjecture. This is a joint work with Claude Bardos. --------------------------------------------------------- Technion Math Net-2 (TECHMATH2) Editor: Michael Cwikel <techm@math.technion.ac.il> Announcement from: Yaeli Malka <yaeli.malka@weizmann.ac.il>