Localizability of the Embedding Problem with Symplectic Kernel

JACK SONN*

Department of Mathematics, Adelphi University, Garden City, Long Island, New York 11530

Communicated by O. Taussky Todd

Received March 23, 1971; revised February 4, 1972

In this paper we consider the question of how much information is supplied by local solutions to a global embedding problem for the special case in which the normal subgroup belonging to the given group extension is the projective symplectic group $\text{PSp}(2m, q)$. It is proved that for suitable Galois extensions K of a given number field k (which constitute part of the data of the embedding problem), the local solutions in a sense determine whether or not an extension $L \supset K$, Galois over k, with $G(L/K) \cong \text{PSp}(2m, q)$, represents a global solution to the embedding problem.

1. INTRODUCTION

Let k be an algebraic number field, K/k a finite Galois extension, $G(K/k) = \bar{G}$ the Galois group of K/k. Let

$$
\Sigma: \quad 1 \longrightarrow N \xrightarrow{i} E \xrightarrow{e} G \longrightarrow 1
$$

be a short exact sequence defining an extension of a finite group N by a group G which is isomorphic to \bar{G}, and let $\gamma: \bar{G} \rightarrow G$ be a fixed isomorphism.

Definition. The embedding problem $P = P(K/k, \Sigma, \gamma)$ is the problem of establishing the existence or non-existence of an extension L/K, such

*Current address: Department of Mathematics, Technion—Israel Institute of Technology, Haifa, Israel.

Copyright © 1974 by Academic Press, Inc. All rights of reproduction in any form reserved.
that L/k is normal, $G(L/k)$ is isomorphic to E, and there exists an isomorphism $\beta: E \to E$ such that the diagram

$$
\begin{array}{ccc}
E & \longrightarrow & G \\
\beta \downarrow & & \gamma \downarrow \\
E & \longrightarrow & G
\end{array}
$$

commutes, where \tilde{e} is the canonical mapping. The pair (L, β) will be called a (proper) solution to P. If $G(L/k)$ is isomorphic to a proper subgroup of E, and β is only a monomorphism, we call (L, β) an improper solution to P.

Let p be a prime ideal of the ring \mathcal{O}_k of integers of k, and let \mathfrak{P} be a divisor of p in K. Let σ_k be a fixed embedding of k into the completion k_p, and let σ_K be an embedding of K into the completion $K_\mathfrak{P}$ such that $\sigma_K|k = \sigma_k$ where we assume that $k_p \subseteq K_\mathfrak{P}$.

From the general theory of local fields we know that σ_k induces a monomorphism σ_k^* of $G(K_\mathfrak{P}/k_p)$ into \mathcal{G}, whose image is $\mathcal{G}(\mathfrak{P})$, the decomposition group of \mathfrak{P}. There results a local embedding problem $P = P(K_\mathfrak{P}/k_p, \Sigma_\mathfrak{P}, \gamma_\mathfrak{P})$ with $\Sigma_\mathfrak{P}: 1 \to N \to E_\mathfrak{P} \to \epsilon_\mathfrak{P} G_\mathfrak{P} \to 1$, where $G_\mathfrak{P} = \gamma(G(\mathfrak{P}))$, $E_\mathfrak{P} = \epsilon^{-1}(G_\mathfrak{P})$, $\epsilon_\mathfrak{P} = \epsilon|E_\mathfrak{P}$, and $\gamma_\mathfrak{P} = \gamma \cdot \sigma_k^*$.

Suppose that a global embedding problem $P(K/k, \Sigma, \gamma)$ has a solution (L, β). Then for each prime \mathfrak{P} of K there results an improper (in general) solution $(L_\mathfrak{P}, \beta_\mathfrak{P})$ to the local embedding problem $P_\mathfrak{P}$, where $L_\mathfrak{P}$ is the completion of L with respect to a divisor q of \mathfrak{P} in L, $L_\mathfrak{P} \supset k_\mathfrak{P}$, and $\beta_\mathfrak{P} = \beta \cdot \sigma_L^*$, where σ_L is an embedding of L into the completion L_q such that $\sigma_L|K = \sigma_K$, and σ_L^* is the monomorphism of $G(L_q/k_p)$ into \mathcal{G} induced by σ_L. (For details, see [3, p. 420].)

How much information about the Galois group \mathcal{E}, considered as an extension of N by G, is obtained from the local solutions? To investigate this question, we introduce the following hypothesis.

Definition. By the localization hypothesis $\mathcal{L}(P) = \mathcal{L}(K/k, \Sigma, \gamma)$ we mean the following: Let an embedding problem $P = P(K/k, \Sigma, \gamma)$ be given, k a number field. Let S be a finite set of prime ideals of k, and let there be associated with each $p \in S$ a prime \mathfrak{P} of K dividing p together with embeddings σ_k, σ_K defined above. Let $P_\mathfrak{P}$ denote the local embedding problem induced by P for each $p \in S$. Suppose that for each $p \in S$, the set \mathcal{L}_p of improper solutions to $P_\mathfrak{P}$ is not empty. Now let there be chosen from each \mathcal{L}_p an improper solution $(L_\mathfrak{P}, \beta_\mathfrak{P})$. Then there exists a finite Galois extension L/k, $L \supset K$, such that $G(L/K) \approx N$, and the following hold:
(i) for each \(p \in S \), there exists an extension \(\sigma_L \) of \(\sigma_K \) to \(L \) such that \(K_p \cdot \sigma_L(L) = L^\mathfrak{g} \), and

(ii) there is an isomorphism \(\alpha: \mathcal{N} \rightarrow N \) (where \(\mathcal{N} = G(L/K) \)) such that for each \(p \in S \), the diagram

\[
\begin{array}{ccc}
G(L^\mathfrak{g}/K_p) & \xrightarrow{\nu_L} & \mathcal{N}(q) \\
\downarrow \alpha^\mathfrak{g} & & \downarrow \alpha \\
N & \xrightarrow{\gamma} & N
\end{array}
\]

is commutative, where \(q \) is the prime ideal of \(L \) induced by \(\sigma_L \), \(\alpha^\mathfrak{g} = \gamma^{-1} \cdot \beta^\mathfrak{g} \cdot \text{Incl}_{L^\mathfrak{g}/K_p} \), and \(\mathcal{N}(q) \) is the decomposition group of \(q \) in \(\mathcal{N} \).

In effect, \(\mathcal{L}(P) \) states that there is a Galois extension \(L \) of \(k \) containing \(K \) such that \(G(L/K) \approx N \) and \(L \) "localizes" to each of the given solutions \((L^\mathfrak{g}, \beta^\mathfrak{g}) \) as if it were a solution field to \(P \).

We call an embedding problem \textit{localizable} if there exists a choice of \(S \) and a corresponding set of \((L^\mathfrak{g}, \beta^\mathfrak{g}) \) such that the field \(L \) yielded by \(\mathcal{L}(P) \) is a solution field to \(P \).

If the kernel \(N \) has trivial center, then the centralizer \(H \) of \(N \) (rather \(\mathcal{L}(N) \)) in \(E \) intersects \(N \) trivially, and if one replaces \(E \) by \(E' = E/H \), one obtains an "irreducible" embedding problem \(P' \), with the same \(N \), but where \(E' \) is isomorphic to a subgroup of the automorphism group \(\text{Aut} N \) of \(N \). It is proved in [3, p. 419], that \(P \) has a solution if and only if \(P' \) has a solution \((L', \beta') \) in which \(L' \cap K = K' \), where \(K' \) is the fixed field of \(\gamma^{-1} \in H \subseteq \overline{G} \). Because of this reduction theorem, we strengthen the hypothesis \(\mathcal{L}(P) \) to the statement \(\mathcal{L}^*(P) \) which says the same thing as \(\mathcal{L}(P) \) with the additional condition that the field \(L \) yielded by \(\mathcal{L}(P) \) can be chosen so that it is linearly disjoint over \(K \) to a finite extension \(L' \) of \(K \) given in advance. This stronger hypothesis reduces the localizability of embedding problems \(P \) with \(N \) having trivial center, (relative to \(\mathcal{L}(P) \),) to the localizability of irreducible embedding problems \(P' \) (relative to the stronger hypothesis \(\mathcal{L}^*(P') \)).

This paper deals with the localizability of irreducible embedding problems in which \(N \approx PSp(2m, q) \), the projective symplectic group of degree \(2m \) over \(GF(q) \), where \(m > 1 \), \(q = p_1 \cdots p_n \) a rational prime. (The case \(m = 1, N \approx PSL(2, q) \) will not be treated here.) It is well known that \(PSp(2m, q) \) is simple (except when \(m = 1 \) and \(q = 2 \) or 3). The embedding problem in this case is relevant to the problem of constructing extensions of \(k \) with prescribed Galois group having \(N \) as a principal factor. We prove here that when \(N = PSp(2m, q) \), there are embedding problems which are not localizable, but every embedding problem \(P(K/k, \Sigma, \gamma) \) in which certain conditions on the local behavior of \(K/k \) are imposed, is localizable.
2. A Counterexample

In this section an example similar to the one in [3, p. 430], is given, in which \(P \) is an irreducible embedding problem, which is not localizable, with \(N \cong PSp(2m, q) \).

Let \(m > 1 \), \(p_0 \) a rational prime, and \(v \) a positive prime integer prime to the order of \(N = PSp(2m, p_0^v) \); for example \(m = 2 \), \(p_0 = 3 \), \(v = 7 \). The number 7 is prime to the order of \(N \) since it is prime to the order of \(PGL(4, 3^v) \) which contains \(N \) as a subgroup. Next set \(E = \langle \Phi, N \rangle \), where \(\Phi \) denotes the automorphism of \(Sp(2m, q) \) induced by applying the Frobenius automorphism \(x \mapsto x^{p_0} \) to the coefficients of a matrix, and \(\Phi \) is the corresponding automorphism induced in \(PSp(2m, q) \). Thus \(E \) is the semidirect product of \(N \) with a cyclic group of order \(v \), so that \(G \) is cyclic of order \(v \).

Now construct an extension \(K/k \) in the same manner as in [3, p. 430]: Let \(k = Q(\zeta_e) \), where \(e \) is the order of \(E \), \(\zeta_e \) is a primitive \(eth \) root of unity, \(K = k(a^{1/n}) \), \(a \in k \), where by virtue of the approximation theorem of valuation theory, \(a \) is chosen to have the following properties:

1. \(a \) is congruent to 1 mod \(p \) for every divisor \(p \) of \(e \) in \(k \) which is prime to \(v \).
2. \(a \) is congruent to 1 mod \(p^v \) for every divisor \(p \) of \(v \) in \(k \), where \(t_p \) is chosen sufficiently large so that every \(t_p^v \)-unit of \(k_p \) is a \(v \)th power of an element of \(k_p \).
3. Let \(p_0 \) be any fixed prime of \(k \) different from all the primes \(p \) occurring in (1) and (2) above. Then \(a \) is chosen to be congruent mod \(p_0 \) to a root of unity in \(k_{p_0} \) which is not a \(v \)th power. (Clearly such a root of unity exists, since \(v \) divides the order of the multiplicative group of the residue class field of \(k_{p_0} \).)

Any \(a \) satisfying (1), (2), and (3) is a \(v \)th power in \(k_p \) for all \(p/e \) but not in \(k \) since it is not a \(v \)th power in \(k_{p_0} \). Hence all prime divisors of \(e \) in \(k \) split completely in \(K \). Finally, let \(\gamma \) be any isomorphism from \(G = G(K/k) \) to \(G \).

We show that the embedding problem \(P(K/k, \Sigma, \gamma) \) (where \(\Sigma' \) is the natural sequence associated with \(E \) as an extension of \(N \) by \(G \)) is not localizable.

Suppose \(S \) is any finite set of primes of \(k \). Any \(\mathfrak{p} \in S \) which divides \(e \) is of no use, since it splits completely in \(K \) and hence gives no information about the (group) extension \(\overline{E} \) of \(N \) by \(\overline{G} \). Hence we may assume that every \(\mathfrak{p} \) in \(S \) is prime to \(e \). But this implies that if \((L^\mathfrak{p}, \beta^\mathfrak{p}) \) is any of the prescribed local improper solutions, then \(L^\mathfrak{p}/k_\mathfrak{p} \) is tamely ramified, so that \(G(L^\mathfrak{p}/k_\mathfrak{p}) \)
is metacyclic. In fact, since \(k \) contains the \(\phi \)th roots of unity, \(G(L^\phi/k_p) \) is abelian. For the action of one cyclic factor on the other is given by raising to the power (absolute norm) \(N(\phi) \) which in this case is congruent to 1 mod the order of the cyclic factor being acted upon.

Let \(\mathcal{S} \) denote the canonical sequence

\[
1 \rightarrow \mathcal{N} \rightarrow E \rightarrow \mathcal{G} \rightarrow 1
\]

associated with the tower \(k \subset K \subset L \), where \(L \) is the field yielded by \(\mathcal{L}(P) \). Now \(\mathcal{L}(P) \) says, in effect, that for each \(\mathfrak{p} \) (the prime of \(K \) corresponding to \(p \in S \)), there is a monomorphism \(\beta_{\mathfrak{p}} : E(q) \rightarrow E \), where \(q \) is a divisor of \(\mathfrak{p} \) in \(L \) and \(E(q) \) is its decomposition group, such that the diagram

\[
\begin{align*}
1 & \rightarrow \mathcal{N}(q) \rightarrow E(q) \rightarrow \mathcal{G}(\mathfrak{p}) \rightarrow 1 \\
1 & \rightarrow \mathcal{N} \rightarrow E \rightarrow \mathcal{G} \rightarrow 1
\end{align*}
\]

commutes (the subscript \(\mathfrak{p} \) is affixed wherever necessary to indicate restriction of the original mapping), where \(\alpha \) is a fixed isomorphism of \(\mathcal{N} \) onto \(\mathcal{N} \), and \(\beta_{\mathfrak{p}}(E(q)) = \beta_{\mathfrak{p}}(G(L^\phi/k_p)) \).

We show now that the above conditions imposed by \(\mathcal{L}(P) \) are fulfilled if \(E \) is isomorphic to the direct product \(C_v \times N \), where \(C_v \) is a cyclic group of order \(v \). This implies that \(P \) is not localizable.

Suppose \(E \cong C_v \times N \). Let \(U_{\mathfrak{p}} = \beta_{\mathfrak{p}}(G(L^\phi/k_p)) \) be any two-generator abelian subgroup of \(E \). We need of course only consider the nontrivial case \(U_{\mathfrak{p}} \not\cong N \), in which case \(U_{\mathfrak{p}}N \cong E \). Since \(\nu \) is prime to the order of \(N \), we may write \(U_{\mathfrak{p}} = C_v \times U_{\mathfrak{p}} \cap N \). Then it is easy to find a subgroup of \(E \) which we shall call \(E(q) \), and an isomorphism \(\beta_{\mathfrak{p}} : E(q) \rightarrow U_{\mathfrak{p}} \) such that (2.1) commutes; namely, let \(E(q) = \mathcal{C}_v \times \alpha^{-1}(U_{\mathfrak{p}} \cap N) \), where \(\mathcal{C}_v \) is the unique subgroup of \(E \) of order \(v \), and let \(\beta_{\mathfrak{p}} \) be the isomorphism of \(\mathcal{C}_v \times \alpha^{-1}(U_{\mathfrak{p}} \cap N) \) onto \(C_v \times U_{\mathfrak{p}} \cap N \) which is uniquely determined by \(\alpha_{\mathfrak{p}} \) and \(\gamma_{\mathfrak{p}} \), where \(\rho : G \rightarrow C_v \) is a representative map for the split sequence \(\mathcal{S} \), so that \(\epsilon_\mathcal{S} = \text{identity} \).

Remark. This example adapts itself to the case \(N = PSL(n, q) \) \(\text{mutatis mutandis} \), as an alternative to the example in [3, p. 430].

3. Localization of the Embedding Problem with Symplectic Kernel

We assume henceforth that \(N \cong PSp(2m, q) \), \(m > 1 \) and \(q \neq 2 \) if \(m = 2 \) (\(PSp(4, 2) \cong PSL(2, 9) \)). From the preceding section we know
that not every irreducible embedding problem with kernel N is localizable, given K/k. However, if the local behavior of K/k can be prescribed (in a sense to be made precise), then localizability is guaranteed.

Given k, let K/k be a finite extension (Galois) with Galois group $G(K/k) \cong G$, a finite group. Let a finite set S of primes of k be given. For each p in S, let Ψ be a divisor of p in K. Then the decomposition group $G(\Psi)$ is a subgroup of $G = G(K/k)$ and is the Galois group of the extension K^p/k_p. If we modify K, but not k, then we modify Ψ, and hence $K\Psi$ and $\tilde{G}(\Psi)$. Conversely, suppose ψ is given and G_p is a subgroup of G which is isomorphic to the Galois group of an extension K^p/k_p. Then G_p may occur as a decomposition group $\tilde{G}(\Psi)$ in some extension K/k (via an isomorphism $\gamma: \tilde{G}(\Psi) \to G$). If we specify, for each $p \in S$, such a subgroup G_p of G and assume that in an embedding problem $P(K/k, \Sigma, \gamma)$ that $\gamma(\tilde{G}(\Psi)) = G_p$ for each $p \in S$, where Ψ is a prime of K dividing p, then we say that we are prescribing the local behavior of K/k at (the primes of) S. We can now state the main theorem.

Theorem. Let $P = P(K/k, \Sigma, \gamma)$ be an irreducible embedding problem with $N \approx PSp(2m, q)$, $m > 1$ and $q \neq 2$ if $m = 2$. Then P is localizable if the local behavior of K/k at any finite set of primes of k can be prescribed.

3.1. The Automorphism Group of N

The automorphism group $\text{Aut} \ N$ of N is known (see [2]). Namely: let $Gp(2m, q)$ be the general symplectic group consisting of those nonsingular linear transformations g for which $(gX, gY) = a_g(X, Y)$, where $a_g \in GF(q)$, $a_g \neq 0$, and a_g is independent of X and Y, and $(,)$ denotes a nondegenerate symplectic (skew-symmetric and bilinear) form over $GF(q)$ of rank $2m$. Let $PGp(2m, q)$ be the factor group $Gp(2m, q)/A$, A the scalar subgroup. Since the mapping $g \to a_g$ is an epimorphism of $Gp(2m, q)$ onto the multiplicative group of $GF(q)$ with kernel $Sp(2m, q)$, the symplectic group, we have $[Gp(2m, q): Sp(2m, q)] = q - 1$. Furthermore,

$$[PGp(2m, q): PSp(2m, q)] = [Gp(2m, q): A \cdot Sp(2m, q)],$$

the latter index being equal to 1 if $p_0 = 2$, and to 2 if $p_0 \neq 2$.

For convenience we will treat $Gp(2m, q)$ as a group of matrices. Let us introduce the following notation. Denote by e_{ij}^n the n by n matrix with 1 in the i, j position, and zeros elsewhere. In addition, if for $i = 1, \ldots, r$, A_i is a square matrix of degree n_i, then $\bigoplus\{A_i \mid i = 1, \ldots, r\}$ will denote the square matrix of degree $n_1 + \cdots + n_r$ with A_1, \ldots, A_r in order down
the main diagonal, zeros, elsewhere. If all the A_i are equal, then we will write simply $\bigoplus r A_i$.

Set $J = \bigoplus_m (e_{1,2}^{(1)} - e_{2,1}^{(2)}); \text{then } Sp(2m, q) = \{X \in GL(2m, q) \mid X^T J X = J\}$ and $Gp(2m, q) = \{X \in GL(2m, q) \mid X^T J X = a_x J \text{ for some } a_x \neq 0 \text{ in } GF(q)\}$. The matrix $Z = \bigoplus_m (\zeta e_{11}^{(1)} + e_{22}^{(2)})$ belongs to $Gp(2m, q)$ ($0 \neq \zeta \in GF(q))$ and $u_z = \zeta$. We assume henceforth that ζ is a primitive $q - 1$th root of unity in $GF(q)$. Set $Z = Z \mod A$.

Next let Φ be the automorphism of $Gp(2m, q)$ and by restriction, of $Sp(2m, q)$ as well) induced by applying the Frobenius automorphism $x \mapsto x^{q^m}$ to the coefficients of a matrix. Let Φ be the automorphism of $PGp(2m, q)$ (and of $PSp(2m, q)$) induced by Φ. Then

$$\text{Aut } N = \text{Aut } PSp(2m, q) = \langle \Phi, PGp(2m, q) \rangle,$$

the semidirect product of $\langle \Phi \rangle$ and $PGp(2m, q)$. (Aut N can be identified with the group of all semilinear transformations g of the $2m$-dimensional symplectic $GF(q)$-space such that $(gX, gY) = a_g(X, Y)^s$, where $0 \neq a_g \in GF(q), s_g \in G(GF(q)/GF(p))$, modulo the scalar transformations $X \mapsto aX$.) It follows that $Out N$, the outer automorphism group of N, is a cyclic group of order ν if $p_0 = 2$, and is the direct product of a cyclic group of order ν with a group of order 2 if p_0 is odd. We denote by Z, Φ, the classes of Z, Φ respectively, in $Out N$, so that $Out N = \langle \Phi \rangle$ or $\langle \Phi, Z \rangle$ accordingly as $p_0 = 2$ or p_0 is odd. (The exceptional case $PSp(4, 2) = PSL(2, 9)$ is excluded.)

3.2. Reformulation of $\mathcal{P}(P)$

In order to make use of $\mathcal{P}(P)$, it is advantageous to reformulate it by identifying isomorphic groups. It is shown in [3, p. 424], that $\mathcal{P}(P)$ is equivalent to the following: Given a family \mathcal{U} of subgroups U of E such that

(i) for each U there is a prime $p = p_U$ of k and a divisor Ψ of p in K such that the local problem P_{Ψ} has an improper solution with $\beta^\Psi G(L^\Psi/k_p) = U$, and

(ii) the correspondence $U \mapsto p_U$ is one-one;

Then there exists an extension (of groups)

$$\Sigma: 1 \longrightarrow N \longrightarrow E \longrightarrow G \longrightarrow 1$$

of N by G such that
(iii) for each $U \in \mathcal{U}$, there is a subgroup \mathcal{U} of \mathcal{E} and an isomorphism

$$\delta = \delta_U : \mathcal{U} \to U$$

such that $\iota^{-1}(\mathcal{U} \cap \iota N) = \iota^{-1}(U \cap \iota N)$, and the diagram

\[
\begin{array}{ccc}
\iota^{-1}(\mathcal{U} \cap \iota N) & \to & \mathcal{U} \to G \\
\| & & \downarrow \delta \\
\iota^{-1}(U \cap \iota N) & \to & U \to G
\end{array}
\]

(3.1)

commutes, and

(iv) if Σ and Σ' are equivalent group extensions, or even if there is

an isomorphism $\beta : E \to E$ such that $\epsilon \beta = \epsilon$ (a weaker condition), then

the embedding problem P has a solution.

In this reformulation, Σ corresponds to the Galois group sequence,

$E = G(L/k)$, where L is the field yielded by $\mathcal{L}(P)$. Also, we write $U = p''(G(L'/k_p))$. $U = 8_p$ is then the decomposition group $E(q)$ for some divisor q of p in L.

3.3. Proof of the Theorem, Part I

We show first that we can find a set \mathcal{U} satisfying (i) and (ii) such that

the sequence Σ yielded by $\mathcal{L}(P)$ (reformulated) has the property that E

is isomorphic to a subgroup of Aut N, i.e., the centralizer $Z_E(\iota N)$ of

ιN in \mathcal{E} is trivial. In Part II of the proof we will expand \mathcal{U} to a larger set

such that any Σ yielded by $\mathcal{L}(P)$ relative to the larger \mathcal{U} is equivalent to Σ.

Suppose $\mathcal{H} = Z_E(\iota N) \neq 1$. Then \mathcal{H} is a normal subgroup of G, and

contains a minimal normal subgroup of G which in turn contains a cyclic

subgroup C of prime order. If we set $C = \mathcal{H} \cap \mathcal{H}^{-1}C \cong C$, then E contains

$C \times \iota N$ as a subgroup. It therefore suffices to determine \mathcal{U} such that for

every cyclic subgroup C of G of prime order, such that C is contained in

a minimal normal subgroup of G, there is a $U \in \mathcal{U}$ such that

(a) $\epsilon U \supseteq C$, and

(b) if $U_1 = U \cap \epsilon^{-1}C$, there is no monomorphism of U_1 into

$C \times \iota N$ (or equivalently, $C \times N$) whose restriction to to $U_1 \cap \iota N$ is the

identity mapping (and which induces the identity mapping on C).

Case 1. $C = \langle \mathbb{Z} \rangle$ (See Section 3.1).

In this case $p_0 \neq 2$ and C has order 2.

Subcase 1.1. $q \equiv 1$ (mod 4). Set

$$A = (\zeta e_{11} + e_{22}) \oplus (\oplus_{m=1}^{\infty} (\zeta e_{12} - e_{21})) \in Gp(2m, q),$$
where here and in what follows, \(e_{ij} = e_{ij}^{(q)} \), and \(\zeta \) is a primitive, \(q - 1 \)th root of unity in \(GF(q) \). Set \(A = A \mod \text{scalars}, \) and \(U = \langle A \rangle \). By \(\text{Chebotarev's density theorem} \) (given a finite Galois extension \(K/k, k \) a number field, and given a cyclic subgroup \(\overline{C} \) of \(\overline{G} = G(K/k) \), there exist infinitely many primes \(\mathfrak{P} \) of \(K \) such that the decomposition group \(\overline{G}(\mathfrak{P}) = \overline{C} \), there are infinitely many primes \(p \) for which \((a) \) can be satisfied. For we can choose a \(p \) of \(k \) which has a divisor \(\mathfrak{P} \) in \(K \), unramified over \(p, \) such that \(\overline{G}(\mathfrak{P}) = \overline{C} \), and since \(U \) is cyclic, there is a solution \((L_{\mathfrak{P}}, \beta_{\mathfrak{P}}) \) to the local problem \(P_{\mathfrak{P}}(K/k, \Sigma, \gamma_{i}, \mathfrak{P}) \) in which the extension group \(E_{i} \) is cyclic and \(K_{i}/k_{i} \) is unramified, has a (proper) solution \((L_{1}, \beta_{1}) \) with \(L_{1}/k_{1} \) unramified (see e.g. [3, p. 434]).

To prove \((b) \), suppose that such a monomorphism existed. Then there would exist \(B \in Sp(2m, q) \) such that \(B^2 = bA^2 \ (0 \neq b \in GF(q)) \). Now

\[
A^2 = (\zeta^2 e_{11} + e_{22}) \oplus (\bigoplus_{m-1}(-\zeta e_{11} - \zeta e_{22}))
\]

where \(I_r \) denotes the \(r \) by \(r \) identity matrix. Since \(B \) commutes with \(A^2 \) and \(\in Sp(2m, q), \) and \(\xi \neq \xi^{-1} \neq -1, B = (ae_{11} + a^{-1}e_{22}) \oplus B', 0 \neq a \in GF(q), \)

\(B' \in Sp(2m - 2, q), a^2 = b^2, a^{-2} = b \) hence \(a^4 = \zeta^2, \) contradiction.

Subcase 1.2. \(q \equiv 3 \pmod{4} \). Let \(R \) be a representation of \(GF(q^2) \) in the algebra \(M_2(GF(q)) \) of 2 by 2 matrices over \(GF(q), \) let \(u \) be a primitive \(q^2 - 1 \)th root of unity in \(GF(q^2) \), \(A_1 = R(u) \). Set

\[
A = A_1 \oplus (\bigoplus_{m-1}(\zeta e_{11} + e_{22})),
\]

where we may assume \(\det A_1 = \zeta \). It follows that \(A \in Sp(2m, q), a_A = \zeta \) (see Section 3.1 above for definition of \(a_A \)). Set \(U = \langle A \rangle, (a) \) is satisfied by the same argument as in subcase 1.1 above, and denial of \((b) \) leads to an element \(B \) of \(Sp(2m, q) \) satisfying \(B^2 = bA^2 \ (0 \neq b \in GF(q)) \). Since \(u^2 \notin GF(q), \) the commutativity of \(B \) with \(A^2 \) implies that \(B = B_1 \oplus B_2, B_1 \in SL(2, q) \), hence \(B_1 \) and \(A_1 \) commute, which implies \(B_1 = R(v) \) for some \(v \in GF(q^2) \), \(v^{q+1} = 1 \). \(B_1^2 = bA_1^2 \) implies \(u^2 = bu^2 \) which implies \(u^2 = b^{-2}v^2 \). But \((v^2b^{-2}) \) to the power \((q + 1)/2 \) has odd order, and \(u^2 \) to the same power has even order, contradiction.

Case 2.

Subcase 2.1. \(v \) odd. Then \(C \subseteq \langle \Phi \rangle \). Let \(G = \langle \Phi, Z \rangle, 0 < i < v, \)

\(0 \leq j < 2 \) (in this case \(G \) is of this form); we may assume \(i \mid v \). Let
\[U = \langle \Phi^i, A \rangle, \] where \(A = (\zeta_p e_{11} + \zeta_p^{-1} e_{22}) + I_{2m-2}, \) \(\zeta_p \) is a \(p \)th root of unity \(\neq 1 \) in \(GF(q) \), \(p \) a rational prime dividing \(q - 1 \) but not \(p^r - 1 \) for \(0 < r < v \). The existence of \(p \) follows from a lemma of Artin [1, p. 358]. Note \(p \neq 2 \).

Let \(p \) be a prime of \(k \) dividing \(p \). We prescribe the local behavior of \(K/k \) at \(p \) by making \(p \) unramified in \(K/k \), and assuming that the decomposition group \(G(\mathfrak{p}) \) of a divisor \(\mathfrak{p} \) of \(p \) in \(K \) is equal to \(\gamma^{-1} \langle \Phi \rangle \). It follows from the following theorem that there is a local solution \((L^\mathfrak{p}, \beta^\mathfrak{p})\) to \(P_\mathfrak{p} \) such that \(\beta^\mathfrak{p} G(L^\mathfrak{p}/k_p) = U \).

Theorem. Let \(k \) be a local \(p \)-adic field, \(K/k \) a tamely ramified Galois extension of degree \(e \), where \(e = e(K/k), f = f(K/k) \) are the ramification index and residue class degree, respectively, \(\gamma: G(K/k) \to G \) an isomorphism \((G \text{ an abstract group}), N \) a cyclic group of order \(p \), where \(p \) is the characteristic of the residue class field of \(k \). Let \(\Sigma \) be an extension of \(N \) by \(G: 1 \to N \to E \to G \to 1 \) such that the subgroup of \(G \) corresponding under \(\gamma \) to the inertia group of \(G(K/k) \) acts trivially on \(N \); i.e., if \(G_1 \) is the inertia group of \(G = G(K/k) \), then \(G_1 = \gamma(G_1) \) acts trivially on \(N \).

Then the embedding problem \(P = P(K/k, \Sigma, \gamma) \) has a proper solution.

Proof. Postponed until Section 5 for the sake of continuity.

We resume the proof of Subcase 2.1. Assertion (a) is valid for the group \(U = \langle \Phi^i, A \rangle \), hence we must now verify (b). Denial of (b) leads to an element \(B \in Sp(2m, q) \) such that \(B^{-1}AB = bA^{p_0} \) \((0 \neq b \in GF(q))\). Since \(p \neq 2 \), comparison of eigenvalues yields \(b = 1 \), which implies \(\zeta_p \) is either a \(p_0 \)-th root of unity or a \(p_0^4 \)-th root of unity. The first is impossible, and the second implies that \(\zeta_p \) is a \(p_0^2 \)-th root of unity, \(2l = m, m \) even, contrary to the present hypothesis. This completes Subcase 2.1.

Subcase 2.2. \(m \) even. Then either \(p_0 = 2 \) or \(q \equiv 1 \pmod{4} \). Let \(A = A_1 \oplus I_{2m-2}, \) where \(A_1 = R(u_p), u_p \) a \(p \)th root of unity \(\neq 1 \) in \(GF(q^2), \) where this time \(p \) (by virtue of Artin’s lemma) is a prime dividing \(q^2 - 1 \) but not \(p_0^r - 1 \) for \(0 < r < 2v \). \((R \text{ is the same as in Subcase 1.2, a representation of } GF(q^2) \text{ in } M_{2}(GF(q^2)).)\)

There exists \(W_1 \in GL(2, q) \) such that \(\Phi W_1 \) transforms \(R(u) \) into \(R(u)^{p_0} \) for every \(u \in GF(q^2) \). For if \(u \) is a primitive \(q^2 - 1 \)th root of unity in \(GF(q^2) \) and \(f(t) \) is the minimal polynomial of \(R(u) \) over \(GF(p_0) \), then \(f(t)^{p_0} \) is the minimal polynomial of \(R(u)^{p_0} \) and also of \(R(u^{p_0}) = R(u)^{p_0} \), so that \(R(u)^{p_0} \) is similar to \(R(u)^{p_0}, R(u^{p_0}) = R(u)^{p_0} \) for some \(W_1 \in GL(2, q). \) \((f(t)^{p_0} \) is obtained from \(f(t) \) by applying the Frobenius automorphism to the coefficients of \(f(t) \).\)

Set \(\Phi_a = \Phi \cdot (\oplus_m W_1). \) We may modify \(W_1 \) by an element of \(R(GF(q^2)) \)
so that $\Phi_2 = \Phi$, where Φ_2 denotes the class of Φ modulo the inner automorphism group $\text{Inn} \; \text{PSp}(2m, q)$ of $\text{PSp}(2m, q)$.

If $p_0 = 2$, then $C \subseteq \langle \Phi^i \rangle$; set $U = \langle \Phi^i, A \rangle$, where $\Phi_2 = \Phi_2$ mod scalars. If $p_0 \neq 2$, and G is cyclic ($G \neq \langle \Phi^i \rangle$), then $G = \langle \Phi^i \rangle$. If G is not cyclic, then $G = \langle \Phi^i, \mathbb{Z} \rangle$. In the first case, set $U = \langle \Phi^i, A \rangle$.

In the latter three cases, set $B = \oplus_{m=1}^{B_1}$, where $B_1 = R(v)$, v an element of $GF(q^2)$ of maximal 2-power order. If $G = \langle \Phi^i, \mathbb{Z} \rangle$, set $U = \langle \Phi^i B, A \rangle$; if $G = \langle \Phi^i, \mathbb{Z} \rangle$, set $U = \langle \Phi^i, B, A \rangle$. Note that $B \in \text{Sp}(2m, q)$, $B \neq \text{Sp}(2m, q)$, and $B^a = 1$, $(B = B$ mod scalars) since $q \equiv 1 \pmod{4}$, and B commutes with both Φ_2 and A.

Let p be a prime of k dividing p. In the cyclic cases, we prescribe the behavior of p in K/k so that p is unramified in K/k and $\overline{\gamma}(\mathbb{F}) = \gamma^{-1}U \cdot iN$ (where \mathbb{F}/p). In the noncyclic case, we prescribe the local behavior of p in K/k so that p is tamely ramified in K/k, $\gamma^{-1} \langle \mathbb{Z} \rangle$ is the inertia group of \mathbb{F}/p. We apply the theorem of Subcase 2.1 (in the same manner) so that (a) is fulfilled. It remains to verify (b). Denial would yield a matrix $D \in \text{Sp}(2m, q)$, satisfying $A' = bA'p^i$ (assuming $C = \langle \Phi^i \rangle$ or $\langle \Phi^i \mathbb{Z} \rangle$ without loss of generality), $0 \neq b \in GF(q)$. Comparing eigenvalues of both sides of this equation, we conclude $b = 1$, $A' = A'p^i$, $u_p = u_{p^i}$ or $u_p = u_{p^i}q$, implying that u_p is either a p_0^i - 1th root of unity or a p_0^{i+v} - 1th root of unity, hence $2v \mid i$ or $2v \mid i + v$, both impossible since $i > v$. This completes Subcase 2.2 and hence Part I of the proof of the main theorem.

3.4. Proof of the Theorem, Part II

By virtue of Part I, we assume that the field L yielded by the localization hypothesis $L^\ast(P)$ has the property that the centralizer $Z_G(iN)$ of iN in E is equal to one. However, it is now necessary to augment the set of primes p used in Part I to make further restrictions on L.

The isomorphism $\alpha: \overline{N} \rightarrow N$ yielded by $L^\ast(P)$ induces an isomorphism $\alpha^* = \alpha i^{-1}$ of iN onto iN; we assume for convenience that $E \subseteq \text{Aut} \; N$. Then α^* induces a monomorphism $\beta': \overline{E} \rightarrow \text{Aut} \; N$ in the natural way: $\beta'(x) = \gamma \in \text{Aut} \; N$ iff $n^\gamma = \alpha^{-1}(x-i(n)x)$ for $n \in N$. Set $E' = \beta' \overline{E}$. In turn β' induces a monomorphism $\gamma': \overline{G} \rightarrow \text{Out} \; N$. (Here N is identified with $\text{Inn} \; N$; this is valid since iN is the unique minimal normal subgroup of E.) Set $G' = \gamma' \overline{G}$, $\gamma'' = \gamma^{-1}: G' \rightarrow G$.

Let p be a prime of k, q the prime of L induced by the embedding σ_L of L into the algebraic closure \overline{k}_p of k_p. (See Section 1 above.) Let \mathbb{F} be the prime of K divisible by q, $\beta^\mathbb{F}: G(L^\mathbb{F}/k_p) \rightarrow E$ the (prescribed) local solution monomorphism, $\sigma^\ast_L: G(L^\mathbb{F}/k_p) \rightarrow \overline{E}(q)$ the isomorphism induced
by σ_L. Then the monomorphism $\beta^\Psi \sigma_L^{x-1}: E(q) \to E$ is coherent with α and γ, i.e., the diagram

$$
\begin{array}{c}
I \overset{\iota}{\longrightarrow} N(q) \overset{\iota}{\longrightarrow} E(q) \overset{\iota-}{\longrightarrow} G(\Psi) \overset{\iota}{\longrightarrow} I \\
\downarrow{\alpha} \hspace{1cm} \downarrow{\beta^\Psi \sigma_L^{x-1}} \hspace{1cm} \downarrow{\gamma} \\
I \overset{\iota}{\longrightarrow} N \overset{\iota}{\longrightarrow} E \overset{\iota}{\longrightarrow} G \overset{\iota}{\longrightarrow} I
\end{array}
$$

is commutative. (Here ι, ι denote their restrictions to the given subgroups.)

On the other hand, β' restricted to $E(q)$ is a monomorphism of $E(q)$ into E'. Set $U_{\Psi} = \beta^\Psi G(L_{\Psi}/k_{\Psi})$; then U_{Ψ} also is $\beta^\Psi \sigma_L^{x-1}E(q)$. Set $U_{\Psi}' = \beta'^E(q)$. Finally, set $\beta_{\Psi}' = \beta^\Psi \sigma_L^{x-1} \beta'^{-1}: U_{\Psi}' \to U$. By construction, the restriction of β_{Ψ}' to $\iota N \cap U_{\Psi}'$ is the identity mapping; moreover, the diagram

$$
U_{\Psi}'/\iota N \cap U_{\Psi}' \overset{\gamma_{\Psi}}{\longrightarrow} U_{\Psi}/\iota N \cap U_{\Psi} \quad \downarrow \gamma'' \quad \downarrow \\
G' \quad \gamma' \quad G
$$

with canonical vertical arrows, and γ_{Ψ} induced by β_{Ψ}', is commutative. In other words, β_{Ψ}' is the identity mapping in ιN and agrees with γ'' mod ιN.

In order that (L, β') be a solution to P it is necessary and sufficient that $E = E'$ and γ'' be the identity mapping, by definition of β' and γ''.

We now augment the set of primes p used in Part I so that (L, β') is a solution, as follows:

(i) We fix a system of generators of G.

(ii) For each generator g of G given in (i), we produce subgroups U of E with the following properties:

1. $g \in \iota U$.

2. If for each U there is a monomorphism $\delta: U \to E'$ such that δ leaves $U \cap \iota N$ elementwise fixed and δ agrees with γ''^{-1} mod ιN, then $\gamma''^{-1}(g) = g$.

3. There is a local solution (L_{Ψ}, β_{Ψ}) to P such that $U = U_{\Psi}$.

4. The prime p of k under Ψ has not been used elsewhere. If (1)–(4) can be fulfilled, then P is localizable.

To fix a system of generators of G in (i), we observe that any subgroup of $\text{Out } N$ can be generated by a set of the form $\{Z\}$, $\{\Phi^i\}$, $\{\Phi^i Z\}$, or $\{\Phi^i, Z\}$, where $i | \nu$. (See Section 3.1.)
Case 1. $G = \langle \zeta \rangle$. Set $U = \langle A \rangle$, where $A = \sum_{m} (\xi_{e_{11} + e_{22}})$. Let ξ a primitive $q-1$th root of unity in $GF(q)$, so that (1) is satisfied. Suppose $\delta: U \to E'$ is a monomorphism such that $\delta / U \cap N$ is the identity mapping and agrees with γ^{r-i} mod $U \cap iN$. Then $\delta(A) = \Phi^{i}C$, $C \in Gp(2m, q)$, and $A^2 = \delta(A)^2 = (\Phi^{i}C)^2$, since $A \in N$. If $i = 0$, then since $C = \gamma^{r-i}(A) \neq 1$ and ξ has order 2, we must have $C = \xi Z$ so we are done. If $i \neq 0$, then $(\Phi^{i}C)^2 = bA^2$, $0 \neq b \in GF(q)$, hence $\Phi^{i}C$ commutes with A^2. $(\Phi^{i})^{c-1} = (A^2)^{c-1} = A^{2p^0}$, hence A^2 and A^{2p^0} are similar, so that $\xi^2 = \xi^{2p^0}$, $\xi^{2p^0 - a} = 1$, $\xi \in GF(p^0)$. But $i \equiv 0 \pmod{v}$, hence if $i < v$, $i = v/2$, and we have $\xi^2 \in GF(p^{2v})$ which is impossible by choice of ξ. Thus (2) is verified. There are, by Cebotarev's density theorem (see Section 3.3), infinitely many unramified primes Ψ of K whose decomposition groups $G(\Psi)$ are equal to any prescribed cyclic subgroup of G, in particular, to G itself in this case. Since U is cyclic, we can find (as in Section 3.3) a local solution (L^{p}, B) to P with L^{p}/K_{p} unramified and $U_{Q} = U$, hence (3) is verified. (4) can be satisfied since infinitely many such Ψ exist. This completes Case 1.

Case 2. $G = \langle \Phi^{i}Z \rangle$, $i | v$, $0 \leq j < 2$. We claim first that the local restrictions already imposed in Part I of the proof imply that $\gamma^{r-i}(\Phi^{i}Z) = \Phi^{i}Z^*$ for some s, $0 \leq s < 2$.

Proof of Claim. For v odd, we may assume that $j = 0$. The group U of Part I is $\langle \Phi^{i}, A \rangle$, where $A = (\xi_{p}e_{11} + \xi_{p}^{-1}e_{22}) \oplus I_{2m-2}$, ξ_{p} a p'th root of unity $\neq 1$ in $GF(q)$, p prime, $p | q - 1$ but $p \neq p^{0} - 1$ for $0 < r < v$. Let $\delta: U \to E'$ be a monomorphism leaving $U \cap iN$ pointwise fixed and agreeing with γ^{r-i} mod N. If $\delta(\Phi^{i}) = \Phi^{i}B$ $(0 \leq r < v)$, it follows that $A^{\sigma B} = bA^{\sigma}$, $0 \neq b \in GF(q)$, $A^{\sigma B}A^{\sigma B^{-1}} = bA = A$ to the power $\Phi^{i}B^{\sigma_{-1}}$, implying bA is similar to $A^{\sigma B^{\sigma_{-1}}}$. Comparing eigenvalues, we get $b = 1$, $\xi_{p} = \xi_{p}^{2t_{r}} - 1$. By choice of p ($p | q - 1$, $p \neq p^{0} - 1$ for $r < v$), $-p^{0} - i$ is impossible for $r \neq i \pmod{v}$ and $-p^{0} - i$ is impossible for v odd and $r \neq i \pmod{v}$.

For v even, the group U of Part I is contained in $\langle \Phi^{i}, A, B \rangle$ (see Part I, Subcase 2.2 above for definition of Φ^{i}, A, B). The crucial relation is between $\Phi^{i}A$ or $\Phi^{i}B$, respectively, according as $j = 0$ or 1, and A. Suppose $\delta(\Phi^{i})$ (or $\delta(\Phi^{i}B$ respectively) $= \Phi^{i}C$. Then $A^{\Phi^{i}B} = bA^{\Phi^{i}C}$.

Comparison of element orders yields $b = 1$, and as before, $A^{\sigma_{-1}}$ is similar to A, implying that $A^{\sigma B^{\sigma_{-1}}}$ is similar to A_{1}, hence there exists $u \neq 1$ in $GF(q^{2})$ such that $u^{p} = 1$, $p | p^{0} - 1$ but not $p^{0} - 1$ for $0 < s < 2v$, and (the set) $\{ u, u^{*} \} = \{ u^{p_{0}^{s - r}}, u^{p_{0}^{s - r + v}} \}$. u is distinct from all its conjugates over $GF(p_{0})$, hence u equals one of the two latter powers of u if and only if
\(r - i \equiv 0 \pmod{2\nu} \) or \(r - i + \nu \equiv 0 \pmod{2\nu} \), in particular, \(r \equiv i \pmod{\nu} \) as desired. The claim is proved.

We now resume the proof of Case 2. Suppose first that \(\nu/i \) is odd. Then \((\Phi^i Z)^{2^k} = \Phi^i \) where \(2^k \equiv 1 \pmod{\nu/i} \), hence \(\Phi^i \in G \), whence \(Z^i \in G \). But then \(G = \langle \Phi^i, Z^i \rangle \). By Case 1 we may assume \(\gamma^{s-1}(Z^i) = Z^i \). By the above claim, \(\gamma^{s-1}(\Phi^i) = \Phi^i Z^s \) \((0 \leq s < 2) \). \(\Phi^i \) has odd order \(\nu/i \), and \(\Phi^i Z \) has even order \(2\nu/i \), hence since \(\gamma^{s-1} \) is an isomorphism, \(s = 0 \), which means that \(\gamma^{s-1} \) is the identity mapping.

We now assume \(\nu/i \) is even. We may also assume \(p_0 \neq 2 \), since if \(p_0 = 2 \), then \(Z = 1 \) and there is nothing further to prove.

For the remainder of the proof of Case 2, we need the following two lemmas, the proofs of which are deferred until Section 4 below.

Let \(L/K \) be a finite extension of a finite field \(K \), \(G(L/K) = \langle \theta \rangle \). Let \(A \in GL(n, L) \). We denote by \(N_0 A \) the product \(A^0 A^{-1} \cdots A^0 A \), where \(r \) is the order of \(\theta \), and \(A^0 \) is the matrix obtained from \(A \) by applying \(\theta \) to the coefficients of \(A \).

Lemma 1. Given \(a \in L^* \) (the multiplicative group of \(L \)) there exists \(A \in GL(n, L) \), such that \(\det A = ab^{1-\theta} \) for some \(b \in L^* \), and \(N_0 A \) is an irreducible companion matrix in \(GL(n, K) \).

Lemma 2. Let \(N_0(AX) = bN_0 A \), where \(b \in L^* \), \(A \) and \(X \) are in \(GL(n, L) \), and \(B = N_0 A \) is a companion matrix in \(GL(n, K) \). Then \(X = cY^\theta Y^{-1} \) for some \(c \in L^* \), \(Y \in GL(n, L) \).

Now by Lemma 1, there exists a matrix \(A_1 \in GL(2, q) \) such that
\[
\det A_1 = \xi^b b^{1-p_0^i} \text{ for some } b \in GF(q)^* \text{ (where } \xi \text{ is the primitive } q-1 \text{th root of unity appearing in the matrix } Z), \text{ and } N_{\phi}(A_1) \text{ is an irreducible companion matrix in } GL(2, p_0^i). \text{ Since } 1 - p_0^i \text{ is even, we may write } \\
\det A_1 = \xi^c c, \text{ } c \in GF(q)^*. \text{ Set } A = A_1 \oplus (\oplus_{m-1}(\det A_1) e_{11} + e_{22}), \text{ and } \\
U = \langle \Phi^i A \rangle. \text{ Clearly } (1) \text{ is satisfied. Denial of (2) yields a matrix } C \text{ such that } (\Phi^i C)^{\nu/i} = (\Phi^i A)^{\nu/i}, \text{ } C \in Gp(2m, q), \text{ hence } \Phi^i C \text{ commutes with } (\Phi^i A)^{\nu/i} = N_{\phi}(A), \text{ the latter having coefficients in } GF(p_0^i), \text{ hence } C \text{ commutes with } N_{\phi}(A) = \text{ the direct sum of } N_{\phi}(A_1) \text{ with the direct sum of } m-1 \text{ copies of } (\det A_1) e_{11} + e_{22} \text{ raised to the power } (q-1)/(p_0^i - 1). \text{ It follows that } C = C_1 \oplus C_2, \text{ } C_1 \in GL(2, q), \text{ hence } N_{\phi}(C_1) = dN_{\phi}(A_1), \text{ } d \in GF(q)^*. \text{ It follows from Lemma 2 that } A_1^{-1} C_1 = d_1 Y_1^{\theta} Y_1^{-1} \text{ for some } Y_1 \in GL(2, q), \text{ } d_1 \in GF(q)^*, \text{ hence } \det C_1 = (\det A_1)(d_1^2)(\det Y_1)^{p_0^i - 1}; \text{ in particular, } \det C_1 \text{ and } \det A_1 \text{ are equal up to a square multiple in } GF(q). \text{ This implies that the multipliers } a_A \text{ and } a_C \text{ differ by a square multiplier, hence } C = A = Z^i, \text{ proving (2). (3) and (4) follow exactly as in the previous case, since } U \text{ is cyclic.} \)
Case 3. $G = \langle \Phi^i, Z \rangle$. Follows immediately from Cases 1 and 2. The proof is complete.

4. ON THE NORM FUNCTION N_θ

Lemma. Let K be a finite field, L/K a finite extension with $G(L/K) = \langle \theta \rangle$, θ having order r. Let n be a positive integer. Then every $B \in GL(n, k)$ is the norm $N_\theta A$ of some $A \in GL(n, L)$, where $N_\theta A = A^{\theta r-1} A^{\theta r-2} \cdots A^0 A$.

Remark. The author is indebted to the referee for pointing out that this lemma is a special case of a more general result. Namely, a field K is said to have dimension ≤ 1 if all its finite extension fields have trivial Brauer groups (finite fields have dimension ≤ 1). Let K have dimension ≤ 1. Then for every finite commutative algebra R/K and every cyclic field L/K, the norm $N_{L/K} : (L \otimes_K R)^* \to R^*$ is surjective. This result comes out of the theory of the Brauer group of a commutative ring which has been developed by Azumaya (On maximally central algebras, *Nagoya Math. J.* — (1951), 119–150) and Auslander and Goldman (The Brauer group of a commutative ring, *Trans. A.M.S.* — (1960), 367–409). We prove here only the lemma stated above.

Proof of Lemma. We first observe that B is a norm if and only if every similar matrix B^C, $C \in GL(n, L)$, is also a norm. To see this, form the semidirect product $\langle \theta \rangle GL(n, L)$ and note that $N_\theta X = (\theta X)^r$, $X \in GL(n, L)$. Then if $B = N_\theta X$, $B^C = (N_\theta X)^C = (\theta X)^C = (\theta X)^{cr} = (\theta^C X^C)^r = (\theta C^{-r} \theta^C X^C)^r = (\theta C^{-r} \theta^C X^C)^r = N_\theta (C^{-r} \theta^C X^C)$. Hence without loss of generality, we may assume that B is in rational normal form over K. Then B is a direct sum of companion matrices to prime power polynomials, hence we may assume that B is a companion matrix of $f(t)^m$, where $f(t)$ is a polynomial of degree s in $K[t]$, irreducible over K, and m is a positive integer.

For convenience, we introduce the tensor product notation for matrices. If X and Y and square matrices of degree m and n respectively over a field, then $X \otimes Y$ denotes the square matrix of degree mn, which when looked at as a block matrix of degree n with m by m components, its i, jth block is the product of X with the i, jth component of Y.

B can be transformed into $A \otimes I_m + I_s \otimes N_m$, where N_m denotes the standard nilpotent matrix $e_{12} + e_{23} + \cdots + e_{m-1,m}$ of degree m (here e_{ij} has degree m), and A is a companion matrix of $f(t)$. (See e.g. [5, Theorem 6, p. 115].)

We may therefore transform B into $A \otimes (I_m + N_m)$, by transforming the normal form $A \otimes I_m + I_s \otimes N_m$ by the matrix $I_s \otimes e_{11} + A \otimes e_{28} +$
It is easy to verify that the norm distributes over the tensor product that is, \(\mathcal{N}_\rho(X \otimes Y) = \mathcal{N}_\rho(X) \otimes \mathcal{N}_\rho(Y) \) for any square matrices \(X, Y \) over \(L \). Therefore it suffices to prove that \(B \) is a norm in the following two special cases.

Case 1.

\(B \) is a companion matrix of a polynomial \(f(t) \in K[t] \), irreducible in \(K[t] \).

Case 2. \(B = I \) + \(N_m \).

We treat first Case 1. Let \(n \) now denote the degree of \(f(t) \). Let \(f(t) = f_1(t) \cdots f_s(t) \) be the complete factorization of \(f(t) \) in \(L[t] \). We may assume \(f_i(t) = f_i(t)^{p^{s_i}} \), \(i = 1, \ldots, s \). We have \(s = \text{gcd}(n, r) \). Transform \(B \) into \(B_1 \otimes e_{11} + B_2 \otimes e_{22} + \cdots + B_s \otimes e_{ss} \), where the \(e_{ii} \) have degree \(s \) and \(B_i \) is a companion matrix of \(f_i(t) \), \(i = 1, \ldots, s \). (This is possible since \(\text{gcd}(f_i(t), f_j(t)) = 1 \) for \(i \neq j \).)

Let \(M \) be the splitting field of \(f(t) \) over \(K \). We then have \([L \cap M : K] = s, [M : L \cap M] = n/s, [L : L \cap M] = r/s, \) and \(B_i \in GL(n/s, L \cap M) \). We show first that \(B_i \) is a norm from \(L \) into \(L \cap M \); i.e., \(B_i = \mathcal{N}_\rho(A_i) \) for some \(A_i \in GL(n/s, L) \). Let \(u_1, \ldots, u_{n/s} \) be a basis of \(M \) over \(L \cap M \). Then \(u_1, \ldots, u_{n/s} \) is also a basis of \(LM \) over \(L \). We may extend \(\theta^s \) to an automorphism \((\theta^s)^* \) of \(LM \) such that \((\theta^s)^* \) leaves \(M \) pointwise fixed. Let \(R \) be the regular representation of \(LM \) over \(L \) with respect to the basis \(u_1, \ldots, u_{n/s} \). Then we may assume \(B_1 = R(b), b \in M \). We know \(b = N_{(\theta^s)^*}(a) \) for some \(a \in LM \). Let \(A_1 = R(a) \). Then \(N_{\theta^s}(A_1) = N_{\theta^s}(R(a)) = R(a)^{p^{(r/s)-1}} \cdots R(a)^{p^{r/s}} R(a) \). This last is equal to \(R(a^{(\theta^s)^*}((r/s)-1) \cdots R(a^{(\theta^s)^*}) R(a) \) since if \(au_i = \Sigma_j a_iu_j \), then

\[
(a^{(\theta^s)^*}u_i = (au_i)^{\theta^e^*} = \left(\sum_j a_{ij}u_j \right)^{\theta^e^*} = \sum_j a_{ij}^{\theta^e^*}u_j = \sum_j a_{ij}^e u_j.
\]

Hence the norm expression becomes \(R(N_{(\theta^s)^*}(a)) = R(b) = B_1 \).

Now let \(X = A_1 \otimes e_{11} + I_{n/s} \otimes e_{22} + \cdots + I_{n/s} \otimes e_{ss} \) \((\rho GL(n, L)), \)
\(P = I_{n/s} \otimes (e_{12} + e_{20} + \cdots + e_{s-1,s} + e_{ss}) \) \((\rho GL(n, L)), \)
\(A = PX \). We claim \(N_{\rho^s}(A) = N_{\rho^s}(PX) = (\theta^s)^{(r/s)} \). \((\theta^s)^{(r/s)} \) \(X^{\theta^e^s-1}X^{\theta^e^s-2} \cdots X^{\theta^e}X \). Hence

\[
(\theta^s)^{(r/s)} = (\theta^e \cdot X^{\theta^e^s-1}X^{\theta^e^s-2} \cdots X^{\theta^e}X)^{(r/s)}
\]

\[
= N_{\rho}(X^{\theta^e^s-1}X^{\theta^e^s-2} \cdots X^{\theta^e}X)
\]

\[
= N_{\rho}(X^{\theta^e^s-1})N_{\rho}(X^{\theta^e^s-2}) \cdots N_{\rho}(X^{\theta^e})N_{\rho}(X) = B.
\]

This completes the proof of Case 1. We now prove Case 2.
Let \(a \in L \), \(S_\theta(a) = 1 \), where \(S_\theta \) denotes the trace function. Let \(A_1 = I_m + aN_m \). We observe that \(A_1^\theta = I_m + a^\theta N_m \in L[N_m], \) \(i = 1, \ldots, r \).

\[
N_\theta(A_1) = \prod \{ A_1^\theta r^{-1} \mid 1 \leq i \leq r \} = \prod \{ I_m + a^\theta r^{-1} N_m \mid 1 \leq i \leq r \}
\]

\[= I_m + N_m \text{ (modulo } N_m^2).\]

Suppose inductively that \(N_\theta(A_i) = I_m + N_m \) (modulo \(N_m^{i+1} \)), \(i \geq 1 \).
Let \(A_{i+1} = A_i + bN_{m+1} \), \(b \in L \) to be determined.

\[
N_\theta(A_{i+1}) = N_\theta(A_i) + S_\theta(b) N_m^{i+1} \text{ (modulo } N_m^{i+2}).
\]

Since \(N_\theta(A_i) \) is fixed by \(\theta \), \(N_\theta(A_i) = I_m + N_m + cN_m^{i+1} \) (modulo \(N_m^{i+2} \)), \(c \in K \). Hence \(N_\theta(A_{i+1}) = I_m + N_m + cN_m^{i+1} + S_\theta(b) N_m^{i+1} \) (modulo \(N_m^{i+2} \)).

We therefore choose \(b \) so that \(S_\theta(b) = -c \). When \(i = m - 1 \), \(N_{m+1} = N_m^m = 0 \), hence setting \(A = A_{m-1} \), we have \(N_\theta(A) = I_m + N_m \), completing the proof.

Remark. A theorem of Specht [4] states that if \(L/K \) is any separable cyclic extension of a field \(K \), then for \(X, Y \in GL(n, L) \), \(N_{\theta}X \) is conjugate to \(N_{\theta}Y \) if and only if \(X \) and \(Y \) are \(\theta \)-equivalent,” i.e., there exists \(\gamma \in GL(n, L) \) such that \(Y = \gamma^{-\theta}X\gamma \), or what is the same thing, \(\gamma Y = Z^{\theta}XZ \). In particular, let \(X = I_n \). Then, if \(N_{\theta}(Y) = I_n \) we have \(Y = Z^{\theta}Z \). Conversely, \(N_{\theta}(Z^{\theta}Z) = (\theta Z^{\theta}Z)^r = (\theta^{r-1}Z^{-1}\theta Z)^r = (Z^{-1}\theta Z)^r = I_n \). Thus the statement about elements of \(L^* \) with norm \(=1 \) also generalizes to \(GL(n, L) \).

Lemma 1 of Section 3.4. Given \(a \in L^* \), there exists \(A \in GL(n, L) \) such that \(\det A = ab^{1-\theta} \) for some \(b \in L^* \), and \(N_{\theta}A \) is an irreducible companion matrix in \(GL(n, K) \).

Proof. Let \(B \) be an irreducible companion matrix in \(GL(n, K) \) such that \(\det B = N_{\theta}a \) (ordinary norm). By the preceding lemma, \(B = N_{\theta}A \) for some \(A \in GL(n, L) \). Furthermore, \(N_{\theta}(\det A) = \det N_\theta A = \det B = N_\theta a \), hence \(\det A = ab^{1-\theta} \) for some \(b \in L^* \).

Lemma 2 of Section 3.4. Let \(N_{\theta}(AX) = bN_{\theta}A \), where \(b \in L^* \), \(A \) and \(X \) are in \(GL(n, L) \), and \(B = N_{\theta}A \) is a companion matrix in \(GL(n, K) \). Then \(X = cY^\theta Y^{-1} \) for some \(c \in L^* \), \(Y \in GL(n, L) \).

Proof. We have \((\theta AX)^r = b(\theta A)^r\), so that \(\theta AX \) commutes with \(bB \) hence with \(B \). \(B \in GL(n, K) \), \(B^\theta = B \), hence both \(A \) and \(X \) are contained in the commutative ring \(L[B] \); hence \(AX =XA \). It follows that \(N_{\theta}(AX) = N_{\theta}A \cdot N_{\theta}X = bN_{\theta}A \) whence \(N_{\theta}X = bI \). In particular, \(b^\theta = b \),
localizability of embedding problem

5. a local embedding problem

Theorem. (See Section 3.3 above.) Let k be a local \wp-adic field, K/k a tamely ramified Galois extension of degree ef, where $e = e(K/k)$, $f = f(K/k)$ are the ramification index and residue class degree, respectively, $\gamma: G(K/k) \rightarrow G$ an isomorphism, N a cyclic group of order p, where p is the characteristic of the residue class field of k. Let Σ be an extension of N by G: $1 \rightarrow N \rightarrow E \rightarrow G \rightarrow 1$ such that the subgroup of G corresponding under γ to the inertia group of $G(K/k)$ acts trivially on N; i.e., if G_1 is the inertia group of $G = G(K/k)$, then $G_1 = \gamma(G_1)$ acts trivially on N.

Then the embedding problem $P = P(K/k, \Sigma, \gamma)$ has a proper solution.

Proof. $e - \text{order of } G_1$, is prime to p hence the centralizer of iN in E contains a subgroup $H_1 \approx G_1$ such that $eH_1 = G_1$, H_1 is normal in E, and $H_1 \cap iN = 1$. We factor off the subgroup H_1 and consider the resulting embedding problem $P' = P(K'/k, \Sigma', \gamma')$, where K' is the inertia field of K/k, Σ' is the extension $1 \rightarrow N \rightarrow E' \rightarrow G' \rightarrow 1$ obtained by factoring out $H_1 : E' = E/H_1, G' = G/G_1, G_1 = G(K'/k)$, $\gamma': G' \rightarrow G'$ induced by γ. By Theorem 3.1 of [3, p. 131], P has a proper solution if and only if P' has a proper solution (L', β') satisfying $L' \cap K = K'$. We observe that any solution L' to P' will (automatically satisfy the condition $L' \cap K = K'$, since e and p are relatively prime. We now drop the prime symbol ('') and assume $P = P'$.

We next perform a further reduction to the case Σ is a split extension. If Σ is not a split extension, then let U be a cyclic subgroup of E such that $U \cdot iN = E$, $(G$ is now assumed to be cyclic) and construct the “splitting expansion” E^*, the semidirect product of U with N, where the action of U on N is given by $u^n = u^{-1}(u^{-1}(u(n)) u)$ for $n \in N, u \in U$. Consider first the embedding problem $P_1 = P(K/k, \Sigma_1, \gamma)$ where Σ_1 is the sequence $1 \rightarrow iN \cup U \rightarrow U \rightarrow G \rightarrow 1$. Since U is cyclic, and K/k is now assumed to be unramified, P_1 has a proper solution (L_1, β_1) with L_1/k unramified. (See, e.g., [3, p. 434].)

We consider next the embedding problem $P_2 = P(L_2/k, \Sigma_2, \beta_2)$, where Σ_2 is the sequence $1 \rightarrow N \rightarrow E^* \rightarrow U \rightarrow 1$, where i^*, e^* are the canonical mappings associated with the semidirect product. If P_2 has a proper solution (L_2, β_2), then by Theorem 2.1 in [3, p. 415], the epimorphism of E^* onto E given by $(u, n) \mapsto un (n \in N, u \in U)$ yields a subfield.
L of \(L_2 \) which is a solution field to \(P \). We may therefore assume that \(\Sigma \) splits.

We identify \(\mathcal{G} \) with \(G(K/k) \), where \(K, k \) are the residue class fields of \(K, k \) respectively. The multiplicative group \(K^* \) of \(K \) can be written as

\[
K^* = \langle \pi \rangle \times W \times U^{(1)},
\]

where \(\pi \) is a prime element of \(k \), \(W \) is the group of roots of unity in \(K \) of order prime to \(p \), and \(U^{(1)} \) is the group of units of \(K \) congruent to \(1 \) mod \(\pi^t \).

The isomorphism \(\sigma_0 \) of \(K^+ \) (additive group of \(K \)) onto \(U^{(1)}/U^{(2)} \) given by \(\sigma_0(a) = 1 + a\pi \) mod \(U^{(2)} \) is a \(\mathcal{G} \)-mapping. Prolong \(\sigma_0 \) to a \(\mathcal{G} \)-isomorphism

\[
\sigma : K^+ \rightarrow K^*/H'' ,
\]

where \(H'' = \langle \pi \rangle WU^{(2)} \), and \(\sigma \) is the composite of \(\sigma_0 \) and the canonical isomorphism from \(U^{(1)}/U^{(2)} \) to \(K^*/H'' \).

By local class field theory, \(H'' \) is the norm group of its class field \(L'' \supset K \), and the reciprocity map

\[
\tau : K^*/H'' \rightarrow \overline{N}^* = G(L/K)
\]

is a \(\mathcal{G} \)-isomorphism, since \(H'' \) is \(\mathcal{G} \)-invariant. By the normal basis theorem, \(K^+ \) is a \(\mathcal{G} \)-regular module, i.e.,

\[
K^+ = \oplus \{ A^g \mid g \in \mathcal{G} \} , \quad \text{where } A \approx K^+.
\]

It follows that \(\overline{N}^* \) is \(\mathcal{G} \)-regular so that the cohomology groups \(H^i(\mathcal{G}, \overline{N}^*) = 0 \) for all \(i \). In particular, \(\mathbb{E}^* = G(L^*/k) \) is (group-theoretically) a uniquely determined split extension of \(\overline{N}^* \) by \(\mathcal{G} \). Let \(J_0 \) be a subgroup of \(A \) with \([A : J_0] = p \). Then \(J = \oplus \{ J_0^g \mid g \in \mathcal{G} \} \) is a \(\mathcal{G} \)-submodule of \(K^+ \).

Let \(H' \) be the subgroup of \(K^* \) corresponding to \(J \) under \(\sigma \), so that \(K^*/H' \) is \(\mathcal{G} \)-isomorphic to \(K^+/J \). Let \(L' \) be class field to \(H' \), \(\overline{N}' = G(L'/K) \), \(E' = G(L'/k) \). (\(L'/k \) is normal since \(H' \) is \(\mathcal{G} \)-invariant.) Since \(K^*/H' \) is \(\mathcal{G} \)-regular, \(E' \) is a uniquely determined split extension of \(\overline{N}' \) by \(\mathcal{G} \). We now produce a natural operator epimorphism \(\mu \) from \(\overline{N}' \) onto \(N \) which extends to an epimorphism \(\mu' \) of \(E' \) onto \(E \). \(\overline{N}' \) is the direct product \(\prod \{ B^g \mid g \in \mathcal{G} \} \), where \(B \) is cyclic of order \(p \), say \(B = \langle x \rangle \). Let \(N = \langle y \rangle \).

Define \(\mu(x^g) = y^{\gamma(g)} \) (\(g \in \mathcal{G} \)). It is easy to verify that \(\mu \) determines a \(\gamma \)-epimorphism of \(\overline{N}' \) onto \(N(\mu(z^g) = \mu(z)^{\gamma(g)} \), for all \(z \in \overline{N}' \), \(g \in \mathcal{G} \).

Write \(E' = \overline{U} \overline{N}' \), \(\overline{U} \cap \overline{N}' = 1 \), \(E = UN \), \(U \cap N = 1 \). For \(uz \in E' \),
u \in U, z \in \overline{N}', define \mu'(uz) = \gamma'(u) \mu(z), where \gamma': \overline{U} \to U is an isomorphism such that the diagram

\[
\begin{array}{ccc}
\overline{U} & \xrightarrow{\text{Res}} & \overline{G} \\
\gamma' \downarrow & & \downarrow \gamma \\
U & \xrightarrow{\mu} & G
\end{array}
\]

commutes. \mu and \mu' have the same kernel. Let \(L \) be the subfield of \(L' \) fixed by the kernel of \mu', \(E = G(L/k) \). Then \mu' factors naturally:

\[
E' \xrightarrow{\text{Res}} E \xrightarrow{\beta} E.
\]

\((L, \beta)\) is the desired solution to \(P \). Q.E.D.

Remark. This theorem also holds when \(N \) is an elementary abelian \(p \)-group of rank \(f(k/Q_n) = [k: \mathbb{Z}/p\mathbb{Z}] \); the proof is essentially the same.

REFERENCES