EXponent Reduction for Projective Schur Algebras

Eli Aljadeff and Jack Sonn

Technion–Israel Institute of Technology, Haifa, Israel

Abstract. In this paper it is proved that the “exponent reduction property” holds for all projective Schur algebras. This was proved in an earlier paper of the authors for a special class, the “radical abelian algebras”. The precise statement is as follows: let A be a projective Schur algebra over a field k and let $k(\mu)$ denote the maximal cyclotomic extension of k. If m is the exponent of $A \otimes_k k(\mu)$, then k contains a primitive mth root of unity. One corollary of this result is a negative answer to the question of whether or not the projective Schur group $PS(k)$ is always equal to $Br(L/k)$, where L is the composite of the maximal cyclotomic extension of k and the maximal Kummer extension of k. A second consequence is a proof of the “Brauer-Witt analogue” in characteristic p: if char$(k)=p \neq 0$, then every projective Schur algebra over k is Brauer equivalent to a radical abelian algebra.

1. Introduction

The projective Schur group of a field k, denoted by $PS(k)$, is the subgroup of the Brauer group $Br(k)$ generated by (in fact, consisting of) all classes that may be represented by a projective Schur algebra A. By definition, a finite dimensional k-central simple algebra A is projective Schur if A^*, the group of units of A, contains a subgroup Γ which spans A as a k–vector space and is finite modulo the center, that is, $k^*\Gamma/k^*$ is a finite group. The notions of projective Schur algebras and projective Schur group are the projective analogues of Schur algebras and the Schur group of k (denoted by $S(k)$). These notions (of projective Schur algebra and of projective Schur group) were introduced in 1978 by Lorenz and Opolka [6]. One of the main points for making this generalization is that $PS(k)$ contains (by abuse of language) all symbol algebras. More precisely, any symbol algebra is a projective Schur algebra in an obvious way (indeed, let $A = (a, b)_n$ be the symbol algebra generated by x and y subject to the relations $x^n = a \in k^*, y^n = b \in k^*, yx = \zeta_n xy$, where $\zeta_n \in k^*$ is a primitive n-th root of unity. It is easy to see that $\Gamma = \langle x, y \rangle$ spans A as a k–vector space and $k^*\Gamma/k^* \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. In particular, $k^*\Gamma/k^*$ is a finite group). Invoking the Merkurev-Suslin Theorem, one deduces that if k contains all roots of unity (resp. contains the nth roots of unity), then $PS(k) = Br(k)$ (resp. $PS(k) \supseteq Br(k)_n$) where the subscript n denotes n-torsion. The subgroup $PS(k)$ may be large even if roots

The research was supported by the Fund for the Promotion of Research at the Technion

Typeset by AMS-TEX
of unity are not present in \(k \). Indeed, if \(k \) is a number field, then \(\text{PS}(k) = \text{Br}(k) \) as shown in [6]. Here one uses the fact that for \(k \) a number field, any element in \(\text{Br}(k) \) is split by a cyclic extension which is contained in a cyclotomic extension of \(k \). In general, the projective Schur group \(\text{PS}(k) \) is properly contained in \(\text{Br}(k) \), e.g. when \(k \) is a rational function field \(k_0(x) \) over any number field \(k_0 \). For power series fields \(k = k_0((x)) \) (over a number field \(k_0 \)) the situation depends on the field \(k_0 \). For instance if \(k_0 \) is a number field, any element in \(\text{Br}(k_0) \) is split by a cyclic extension which is contained in a cyclotomic extension of \(k_0 \).

In general, the projective Schur group \(\text{PS}(k) \) is properly contained in \(\text{Br}(k) \), e.g. when \(k \) is a rational function field \(k_0(x) \) over any number field \(k_0 \). For power series fields \(k = k_0((x)) \) (over a number field \(k_0 \)) the situation depends on the field \(k_0 \). For instance if \(k_0 \) is a number field, Kummer extensions do not split any element whose order is prime to the number of roots of unity in \(k \) (restriction-corestriction argument). As mentioned earlier, when \(k \) is a number field, every element in \(\text{PS}(k) = \text{Br}(k) \) is split by a cyclotomic extension of \(k \). In [2] the following is proved:

Theorem 1.1. Every element in \(\text{PS}(k) \) has a splitting field which is the composite of a cyclotomic extension of \(k \) and a Kummer extension of \(k \).

This was a key result used to show that in general \(\text{PS}(k) \) is properly contained in \(\text{Br}(k) \), since one shows that (in general) \(\text{Br}(L/k) \) is properly contained in \(\text{Br}(k) \), where \(L \) denotes the composite of all cyclotomic and Kummer extensions of \(k \).

It is now natural to ask [4, p. 528]: is \(\text{PS}(k) = \text{Br}(L/k) \) in general? In this paper we show that this is false:

Theorem 1.2. There are fields \(k \) for which \(\text{PS}(k) \) is properly contained in \(\text{Br}(L/k) \) where \(L \) is the composite of the maximal cyclotomic extension of \(k \) and the maximal Kummer extension of \(k \).

This will follow (as shown below) from the following theorem which is the main result of this paper.

Theorem 1.3. Let \(k(\mu) \) be the maximal cyclotomic extension of \(k \) and let \(\text{res} : \text{PS}(k) \to \text{PS}(k(\mu)) \) be the restriction map. Then for all \(\alpha \in \text{PS}(k) \), the exponent \(\exp(\text{res}(\alpha)) \) of \(\text{res}(\alpha) \) “divides the number of roots of unity in \(k \)”. More precisely, if \(m = \exp(\text{res}(\alpha)) \), then \(k \) contains a primitive \(m \)th root of unity.

In terms of algebras the theorem says that if \(A \) is a projective Schur algebra over \(k \), then \(\exp(A \otimes_k k(\mu)) \) divides the number of roots of unity in \(k \). We say that projective Schur algebras satisfy the **exponent reduction property**.

To show how Theorem 1.2 follows from Theorem 1.3, take \(k = \mathbb{Q}(x,t) \), the rational function field in two indeterminates over the rationals. Let \(K/\mathbb{Q}(t) \) be a regular extension (over \(\mathbb{Q} \)) which is cyclic of degree four (see, for example, [7, p.224] and let \(D = (K(x)/\mathbb{Q}(x,t), \sigma, x) \) be the corresponding cyclic algebra. It is clear that the order of \(D \) is not reduced by any cyclotomic extension, that is, \(\exp(D \otimes_k k(\mu)) = 4 \), whereas
k does not contain the fourth roots of unity. By Theorem 1.3, $[D] \notin PS(k)$. On the other hand, D is split by a Kummer $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ extension, so $[D] \in Br(L/k)$.

In [4] it is shown that certain projective Schur algebras, so-called radical abelian algebras, satisfy the exponent reduction property. A projective Schur algebra is radical if it is isomorphic to a crossed product algebra $A = (K/k, G, \beta)$ where K/k is a $(G$-Galois) radical extension ($K = k(x_1^{1/n_1}, x_2^{1/n_2}, \ldots, x_r^{1/n_r})$, $x_i \in k^*$) and the class β is represented by a 2-cocycle f whose values in K^* are finite modulo k^*. If G is abelian we call A radical abelian. A radical algebra should be viewed as the “natural” way to construct projective Schur algebras. This is analogous to the construction of cyclotomic algebras (see [10]).

It is conjectured in [1] that every element in $PS(k)$ may be represented by a radical algebra, even (as conjectured in [4]) by a radical abelian algebra. In this paper we show the stronger conjecture holds if the field k has positive characteristic. In fact we show that every element in $PS(k)$ may be represented by the tensor product of algebras which are “natural” examples of radical abelian algebras.

Let $A = (K/k, Gal(K/k), \alpha)$ be a crossed product algebra over the field k. It is well known that if K/k is cyclic, one may represent the class $\alpha \in H^2(Gal(K/k), K^*)$ by a 2-cocycle whose values are in k^* (rather than K^*). If in addition the field K can be embedded in a radical extension L of k, then we may represent the algebra A by the crossed product algebra $(L/k, Gal(L/k), inf(\alpha))$ where $inf(\alpha)$ denotes the image of α under the inflation map. The point of this is that also $inf(\alpha)$ may be represented by a 2-cocycle with values in k^* (in fact, the same set of values), so we see that $(L/k, Gal(L/k), inf(\alpha))$ is a radical algebra. Note that if the extension L/k is abelian, then $(L/k, Gal(L/k), inf(\alpha))$ is a radical abelian algebra. We see that if an element $[A]$ in $Br(k)$ is split by a cyclic extension of k which is contained in a radical (resp. radical abelian) extension of k then A is equivalent to a radical (resp. radical abelian) algebra. Here we consider two types of such algebras.

Type I: Symbol algebras. These are split by a cyclic Kummer extension of k.

Type II: Algebras that are split by a cyclic extension of k which is contained in a cyclotomic extension of k. Note that algebras of type I and type II are radical abelian.

Theorem 1.4. Let k be a field of positive characteristic. Then every element in $PS(k)$ may be represented by an algebra which is the tensor product of algebras of types I and II.

Using the fact that a tensor product of radical (radical abelian) algebras is equivalent to a radical (radical abelian) algebra (see [3,Lemma 2.4], where it is proved for radical algebras, but the same proof applies for radical abelian algebras), we obtain:

Corollary 1.5. If $char(k) \neq 0$, every element in $PS(k)$ is represented by a radical abelian algebra.

2. Proofs of the results

We are given a projective Schur algebra A over k. By definition, A^* (the group of units of A) contains a subgroup Γ which spans A as a k-vector space and which is finite modulo k^*. We write $A = k(\Gamma)$. For any subgroup H of Γ we may consider the
subalgebra spanned by H and denote it by $k(H)$. Recall that Γ is center by finite, so by a theorem due to Schur, Γ', the commutator subgroup of Γ, is finite. The subalgebras $k(H)$ may not be simple, but if we restrict ourselves to subgroups H, with $\Gamma' \subseteq H \subseteq \Gamma$ we have the following reduction [1]:

Theorem 2.1. Let $k(\Gamma)$ be a projective Schur algebra over k. Then it is Brauer equivalent to a projective Schur algebra $k(U)$, U/k^* finite and such that for every subgroup H of U with $U' \subseteq H \subseteq U$, $k(H)$ is a simple algebra.

We say the algebra $k(U)$ is reduced. Thus, for the proof of Theorem 1.3, we shall assume that $k(\Gamma)$ is a reduced algebra. Consider the subalgebra $k(\Gamma')$ and let $K \supseteq k$ be its center. Since the group Γ' is finite, it follows that $k(\Gamma')$ is a Schur algebra over K. Furthermore it is a simple component of the group algebra $k\Gamma'$ and therefore $K \subseteq k(\zeta)$ where $k(\zeta)$ is a cyclotomic extension of k (ζ a root of unity) [2]. In particular, the family $\Omega := \{ k(H) : \Gamma' \subseteq H \subseteq \Gamma, \, k(H) \text{ is a Schur algebra over its center } L_H, \text{ and } L_H \text{ is contained in a cyclotomic extension of } k \}$ is not empty.

Let $k(H)$ be a maximal element in Ω. Observe that such an element exists because $k(\Gamma)$ is finite dimensional over k. Let $k(\zeta)$ be a cyclotomic extension of k which contains $L_H = Z(k(H))$. By Brauer’s Splitting Theorem [5, pp. 385,418], $k(H)$ is split by a cyclotomic extension of L_H, so we may assume that $k(\zeta)$ splits $k(H)$; that is, $k(\zeta) \otimes_{L_H} k(H) \cong M_r(k(\zeta))$ for some integer r. We are to show that $\exp(k(\Gamma) \otimes_k k(\zeta))$ divides the number of roots of unity in k.

To start with, note that the group Γ acts on $k(H)$ by conjugation, hence on its center L_H.

Lemma 2.2. The fixed field L_H^Γ of L_H under Γ is k.

Proof. This is clear, since $L_H^\Gamma \subseteq Z(k(\Gamma)) = k$.

Let $\hat{H} = C_\Gamma(L_H)$, the centralizer of L_H in Γ. By the definition of \hat{H} it follows that $\Gamma' \subseteq H \subseteq \hat{H}$ and $L_H \subseteq Z(k(\hat{H})) = L_{\hat{H}}$. We claim: $L_H = L_{\hat{H}}$. Indeed, the group Γ/\hat{H} acts faithfully on L_H, and since $L_H^{\Gamma/\hat{H}} = k$ we see that $|\Gamma/\hat{H}| = [L_H : k]$. But Γ/\hat{H} acts faithfully on $L_{\hat{H}}$ as well, so by a similar argument, we have $L_{\hat{H}}^{\Gamma/\hat{H}} = k$. This implies $[L_{\hat{H}} : k] = |\Gamma/\hat{H}| = [L_H : k]$, proving the claim.

In order to simplify notation let $L = L_H = L_{\hat{H}}$.

Proposition 2.3. $k(\Gamma) \otimes_k L$ is Brauer equivalent to $k(\hat{H})$.

Proof. Consider $k(\Gamma)$ as a module over $k(\hat{H})$. Let us show it is free of rank $|\Gamma/\hat{H}|$. Let $\{ g_1, ..., g_n \}$ be representatives of the left cosets of \hat{H} in Γ. Clearly, they span $k(\Gamma)$ as a left $k(\hat{H})$ module. To show they are independent we let $w = g_1 z_1 + g_2 z_2 + ... + g_n z_n = 0$ be a nontrivial relation of shortest length. Clearly $s > 1$ since the g_i are invertible. Take $x \in L$ with $g_1 x g_1^{-1} \neq g_2 x g_2^{-1}$ (such an element exists since Γ/\hat{H} acts faithfully on L), and consider

$xw - g_1(x)w = xw - g_1 x g_1^{-1} w$

$= [z_1 g_1(x) g_1 + z_2 g_2(x) g_2 + ... + z_n g_n(x) g_n]$

$-[z_1 g_1(x) g_1 + z_2 g_2(x) g_2 + ... + z_n g_n(x) g_n]$
\[
L \otimes_k k(\Gamma) \cong \text{End}_{k(\tilde{H})}(k(\Gamma)) = \text{Hom}_{k(\tilde{H})}(k(\Gamma), k(\Gamma)) \cong M_\mu(k(\tilde{H}))
\]

(k(\Gamma) with the left \(k(\tilde{H})\) structure). Indeed, the algebra \(k(\Gamma)\) acts on \(k(\Gamma)\) from the right and \(L\) acts on \(k(\Gamma)\) from the left. Clearly the actions commute and both commute with the \(k(\tilde{H})\) left action. (Of course, here we are using that \(L = Z(k(\tilde{H}))\).

This gives a nontrivial homomorphism \(\eta\) from \(L \otimes_k k(\Gamma)\) into \(\text{End}_{k(\tilde{H})}(k(\Gamma))\). The map \(\eta\) is 1-1 (since \(L \otimes_k k(\Gamma)\) is simple) and therefore surjective (the dimensions over \(k\) are equal). This completes the proof of the proposition.

Observe that the algebras \(k(H)\) and \(k(\tilde{H})\) have the same center \(L\), and so (by the double centralizer theorem) we have \(k(\tilde{H}) \cong k(H) \otimes_L A\) (\(A\) central simple over \(L\)).

Theorem 1.3 will follow if we show that \(\text{exp}(A)\) (in \(\text{Br}(L)\)) divides the number of roots of unity in \(k\). We start with the following key lemma.

Lemma 2.4. Let \(z \in \tilde{H}\) and let \(n\) be its order modulo \(k(H)^*\). Then \(n\) divides the number of roots of unity in \(k\).

Proof. We assume the lemma is false and get a contradiction. Taking a power of \(z\) we may, for some prime \(p\), assume the order of \(z\) modulo \(k(H)^*\) is \(p^{r+1}\) and \(k\) contains the \(p^r\)th roots of unity but not the \(p^{r+1}\)th root of unity, \(r \geq 0\).

Consider the action of \(z\) on \(k(H)\) induced by conjugation. Since this action centralizes \(L\), by the Skolem-Noether Theorem there is an element \(a \in k(H)^*\) such that \(w = za^{-1}\) centralizes \(k(H)\). In particular, it centralizes \(a\), so \(z\) and \(a\) commute in \(k(\tilde{H})\). It follows that the element \(w\) is in the center of the subalgebra \(B = k(< H, z >) = k(w)(H) = L(w)(H)\) (in \(k(\tilde{H})\)). Clearly \(L(w)\) is contained in the center of \(B\). In fact \(L(w)\) is precisely the center of \(B\) since there is an obvious map of algebras from \(L(w) \otimes_L k(H)\) (simple with center \(L(w)\)) onto \(B\).

Claim: The element \(w\) satisfies an equation of the form \(X^{p^{r+1}} - e = 0\) where \(e \in L^*\). Furthermore \(p^{r+1}\) is the smallest possible. To see this, recall that \(w\) centralizes \(a\) so that \(a, z, w\) commute. We therefore have \(w^{p^{r+1}} = (za^{-1})^{p^{r+1}} = z^{p^{r+1}}a^{p^{r+1}} \in k(H)^*\).

But \(w^{p^{r+1}}\) centralizes \(k(H)\), hence \(w^{p^{r+1}} \in L = Z(k(H))\). Finally, it is easy to see that the order of \(w\) modulo \(L^*\) equals the order of \(z\) modulo \(k(H)^*\) (\(= p^{r+1}\)). This proves the claim. Observe that the algebra \(B\) is a Schur algebra over its center \(L(w)\) since \(k(H)\) is, and moreover it is of the form \(k(\tilde{H})\), where \(\tilde{H} = < H, z >\). Set \(B_0 = B\) and for \(i = 1, ..., r\) let \(B_i = k(< H, z^{p^i} >) = k(w^{p^i})(H) = L(w^{p^i})(H)\). As for \(B_i\), one shows easily that \(L(w^{p^i}) = Z(B_i)\). Also, note that \(B_i\) strictly contains \(k(H)\), so we will reach a contradiction to the maximality of \(k(H)\) if we show that \(L(w^{p^i})\) is contained in a cyclotomic extension of \(k\). Let us show that this is indeed the case.

First recall that the field \(L(w)\) is the center of the algebra \(B = k(< H, z >)\). By [2, Corollary 2.3] \(L(w)\) is contained in the composite of the maximal cyclotomic extension \(k(\mu)\) of \(k\) and a (finite) Kummer extension \(k(U)\) of \(k\). Since \(k\) contains no primitive \(p^{r+1}\) root of unity, the \(p\)-primary component of the Galois group \(\text{Gal}(k(U)/k)\) has exponent \(\leq p^r\).
It follows that the p-primary component of $\text{Gal}(k(\mu, U)/k(\mu))$ has exponent at most p^r. On the other hand the field $k(\mu, w)$ is a Kummer extension of $k(\mu)$ and is contained in $k(\mu, U)$. Hence if $w^{p^r} \notin k(\mu)$, $\text{Gal}(k(\mu, w)/k(\mu))$ is cyclic of order p^{r+1}. This is impossible of course. It follows that $w^{p^r} \in k(\mu)$ and hence $L(w^{p^r}) \subseteq k(\mu)$. This completes the proof of the lemma.

Our next step will be to decompose the algebra $k(\hat{H})$ as a tensor product $k(H) \otimes_L A$, with exp(A) dividing the number of roots in k.

To do this recall that $\text{PA}_b(F)$ is the subgroup of $\text{PS}(F)$ consisting of classes which may be represented by a projective Schur algebra $F(\Gamma)$ and $\Gamma/F^* = G$ abelian. In this case we say that $F(\Gamma)$ is of abelian type. Obviously, the natural examples are the symbol algebras. We recall from [3] the following

Proposition 2.5. If $F(\Gamma)$ is a projective Schur algebra of abelian type, then it is Brauer equivalent to the tensor product of symbol algebras. Furthermore, if exp(G) $\equiv n$, then the exponent of $F(\Gamma)$ in $\text{Br}(F)$ divides n.

Lemma 2.6. Let $k(H)$ and $k(\hat{H})$ be as above. Then $k(\hat{H}) \cong k(H) \otimes_L L(\Lambda)$ where $L(\Lambda)$ is a projective Schur algebra of abelian type and $\text{exp}(\Lambda/L^*)$ divides the number of roots of unity in k. Furthermore, $L(\Lambda)$ is isomorphic to a product of symbol algebras.

Let us postpone the proof of the lemma and complete the proof of Theorem 1.3.

By Lemma 2.6, exp($L(\Lambda)$) (as an element in $\text{Br}(L)$) divides exp(Λ/L^*), hence exp($L(\Lambda)$) divides the number of roots of unity in k. But $k(\Gamma) \otimes_k k(\mu) \sim k(\hat{H}) \otimes_L k(\mu)$ (as an element in $\text{Br}(L)$) and Proposition 2.3; \sim denotes Brauer equivalence)

$\cong k(H) \otimes_L L(\Lambda) \otimes_L k(\mu)$
$\sim L(\Lambda) \otimes_L k(\mu)$ (k(H)

is Schur over L, hence is split by $k(\mu)$).

This implies that exp($k(\Gamma) \otimes_k k(\mu)$) = exp($L(\Lambda) \otimes_L k(\mu)$) which divides exp($L(\Lambda)$).

It follows that $k(\Gamma) \otimes_k k(\mu)$ divides the number of roots of unity in k and the theorem is proved.

Proof of Lemma 2.6. (See [3, Lemma 2.3].) Recall that \hat{H} normalizes $k(H)^*$ hence we may consider the subgroup $\hat{H}k(H)^*$ of the units of $k(\hat{H})$. Let Λ be the centralizer of $k(H)$ in $\hat{H}k(H)^*$. Since $\Lambda \cap k(H)^* = L^*$, it follows that $\Lambda/L^* \subset \hat{H}k(H)^*/k(H)^*$ which is a quotient of $\hat{H}/L^* \cap \hat{H}$. This implies Λ/L^* is finite. Furthermore, the commutator subgroup \hat{H}' of \hat{H} is contained in $k(H)^*$ (since $\hat{H}' \subset 1\cap H$), so Λ/L^* is abelian.

Finally, we recall from Lemma 2.4 that the order of any element in \hat{H} modulo $k(\mu)$, hence exp(Λ/L^*), divides the number of roots of unity in k. By Proposition 2.5 it follows that the order of $L(\Lambda)$ in $\text{Br}(L)$ divides exp(Λ/L^*), hence it also divides the number of roots of unity in k. In the proof of Proposition 2.5, it is shown that $L(\Lambda)$ is isomorphic to a product of symbol algebras. To complete the proof of Lemma 2.6, we need to show that $k(\hat{H}) = k(H) \otimes_L L(\Lambda)$. By the double centralizer theorem, we have $k(\hat{H}) \supseteq k(H) \otimes_L L(\Lambda) = k(H)L(\Lambda)$. In order to prove the reverse inclusion, take an element $z \in \hat{H}$. z normalizes $k(H)$ and centralizes its center L. Therefore, there is an element $e(z) \in k(H)^*$ such that $z^{-1}e(z)$ centralizes $k(H)$. This puts $z^{-1}e(z)$ in Λ, and the lemma is proved. \(\square\)
Corollary 2.7. If the field k contains all roots of unity then every element in $PS(k)$ is equivalent to a product of symbol algebras.

(This is of course a direct consequence of the Merkurev-Suslin Theorem.)

Proof. Let $k(\Gamma)$ be a projective Schur algebra. We may assume it is reduced. If k contains all roots of unity then the field L above must be k, so the algebra $k(H)$ coincides with the entire algebra $k(\Gamma)$. From the proof above, it follows that $k(\Gamma)$ is the tensor product of a Schur algebra $k(H)$ over k and symbol algebras. But $k(H)$ must be split (Brauer’s theorem), hence $k(\Gamma) \sim$ product of symbol algebras.

We turn now to the proof of Theorem 1.4.

Let k be a field of characteristic $p > 0$ and let $A = k(\Gamma)$ be a projective Schur algebra over k. We are to show that A is represented by the tensor product of symbol algebras and an algebra which is split by a cyclotomic extension of k (note that in positive characteristic every finite cyclotomic extension is cyclic). Since the tensor product of such algebras (tensor product of symbol algebras and an algebra which is split by a cyclotomic extension of k) is again such an algebra, we may assume $\text{exp}(A) = q^t$, where q is a prime number and $t > 0$. If k contains no non trivial q-th roots of unity (in particular if $q = p$), A is split by a cyclotomic extension by Theorem 1.1 (k has no Kummer q-extension). On the other hand if k contains all q-power roots of unity, then A is similar to a tensor product of symbol algebras by [8] or Corollary 2.7. We therefore assume k contains a primitive q^tth root of unity ($r > 0$) but not a primitive q^{t+1}th root of unity. By exponent reduction (Theorem 1.3) there is a finite cyclotomic extension $k(\zeta)$ of k such that $\text{exp}(A \otimes_k k(\zeta)) = q^s$, $0 \leq s \leq t$. It follows that $A^{\otimes q^s}$ is split by $k(\zeta)$ and is therefore equivalent to a cyclic algebra $(k(\zeta)/k, \sigma, a)$ where (by abuse of notation) the 2-cocycle is determined by the relation $\sigma^n = a$, $n = [k(\zeta) : k]$. The key observation here is that the algebra $A^{\otimes q^s}$ has a q^sth root in $\text{Br}(k)$ which is split by a cyclotomic extension of k. In other words, there is a cyclic algebra $B = (k(\zeta_1)/k, \tau, b)$ with $B^{\otimes q^s} \sim A^{\otimes q^s}$. Of course B is a radical abelian algebra. Let us complete the proof of the theorem assuming such a B exists.

Consider the algebra $C = B^{-1} \otimes_k A$. Clearly $[C]^{q^s} = 1$ in $\text{Br}(k)$. Furthermore k contains a primitive q^sth root of unity and so by the Merkurev-Suslin Theorem, C may be represented by a product of symbol algebras. The theorem is now proved since $A \sim B \otimes_k C$. It remains to show the existence of B. Keeping in mind that $\text{char}(k) = p$, we see that the cyclic cyclotomic extension $k(\zeta)/k$ can be embedded into a cyclic cyclotomic extension $k(\zeta_1)/k$ of degree q^n. By [9, p. 262], the algebra $B = (k(\zeta_1)/k, \tau, a)$ (same a as in A) has the desired property. \square

Remark. From the proof we see that if $\text{char}(k) \neq 0$, then a central simple k-algebra has the exponent reduction property if and only if it is a projective Schur algebra over k.

References

Department of Mathematics, Technion, 32000 Haifa, Israel

E-mail address: aljadeff@math.technion.ac.il, sonn@math.technion.ac.il