A note on coloring line arrangements

Eyal Ackerman∗ János Pach† Rom Pinchasi‡ Radoš Radoičić§ Géza Tóth¶

Abstract

We show that the lines of every arrangement of n lines in the plane can be colored with $O(\sqrt{n/\log n})$ colors such that no face of the arrangement is monochromatic. This improves a bound of Bose et al. [1] by a $\Theta(\sqrt{\log n})$ factor. Any further improvement on this bound would also improve the best known lower bound on the following problem of Erdős: estimate the maximum number of points in general position within a set of n points containing no four collinear points.

Keywords: Arrangements of lines, chromatic number, sparse hypergraphs.

1 Introduction

Given a simple arrangement A of a set L of lines in \mathbb{R}^2 (no parallel lines and no three lines going through the same point), decomposing the plane into the set C of cells (i.e. maximal connected components of $\mathbb{R}^2 \setminus L$), Bose et al. [1] defined a hypergraph $H_{\text{line-cell}} = (L, C)$ with the vertex set L (the set of lines of A), and each hyperedge $c \in C$ being defined by the set of lines forming the boundary of a cell of A. They initiated the study of the chromatic number of $H_{\text{line-cell}}$, and proved that for $|L| = n$, $\chi(H_{\text{line-cell}}) = O(\sqrt{n})$ and $\chi(H_{\text{line-cell}}) = \Omega\left(\frac{\log n}{\log \log n}\right)$. In other words, they proved that the lines of every simple arrangement of n lines can be colored with $O(\sqrt{n})$ colors so that there is no monochromatic face; furthermore, they provided an intricate construction of a simple arrangement of n lines that requires $\Omega\left(\frac{\log n}{\log \log n}\right)$ colors.

In this short note, we improve their upper bound by a $\Theta(\sqrt{\log n})$ factor, and extend it to not necessarily simple arrangements.

Theorem 1. The lines of every arrangement of n lines in the plane can be colored with $O(\sqrt{n/\log n})$ colors so that no face of the arrangement is monochromatic.

A set of points in the plane is in general position if it does not contain three collinear points. Let $\alpha(S)$ denote the maximum number of points in general position in a set S of points in the plane, and let $\alpha_4(n)$ be the minimum of $\alpha(S)$ taken over all sets S of n points in the plane with no four point on a line. Erdős pointed out that $\alpha_4(n) \leq n/3$ and suggested the problem of determining or estimating $\alpha_4(n)$. Füredi [3] proved that $\Omega(\sqrt{n \log n}) \leq \alpha_4(n) \leq o(n)$.

∗Department of Mathematics, Physics, and Computer Science, University of Haifa at Oranim, Tivon 36006, Israel. ackerman@sci.haifa.ac.il.
†EPFL, Lausanne and Alfréd Rényi Institute, Budapest. pach@cims.nyu.edu. Supported by NSF grant CCF-08-30272, by Hungarian Science Foundation EuroGIGA Grant OTKA NN 102029, and by Swiss National Science Foundation Grant 200021-125287/1.
‡Mathematics Department, Technion—Israel Institute of Technology, Haifa 32000, Israel. room@math.technion.ac.il. Supported by BSF grant (grant No. 2008290).
§Department of Mathematics, Baruch College, City University of New York, New York, USA. rados.radoicic@baruch.cuny.edu.
¶Alfréd Rényi Institute, Budapest, Hungary. geza@renyi.hu. Supported by Hungarian Science Foundation Grant OTKA T 046246.
We observe that any improvement of the bound in Theorem 1 would immediately imply a better lower bound for $\alpha_4(n)$. Indeed, suppose that $\chi(A) \leq k(n)$ for any arrangement of n lines, and let P be a set of n points, no four on a line. Let P^* be the dual arrangement of a slightly perturbed P (according to the usual point-line duality, see, e.g., [2 § 8.2]). Color P^* with $k(n)$ colors such that no face is monochromatic, let $S^* \subseteq P^*$ be the largest color class, and let S be its dual point set. Observe that the size of S is at least $n/k(n)$ and it does not contain three collinear points, since the three lines that correspond to any three collinear points in P bound a face of size three in P^*.

2 Proof of Theorem 1

Let \mathcal{A} be an arrangement of a set L of n lines, decomposing the plane into the set C of cells, and let $H_{\text{line-cell}}$ be the corresponding hypergraph (defined as in the previous section). We show that $\chi(H_{\text{line-cell}}) = O\left(\sqrt{\frac{n}{\log n}}\right)$.

An independent set in $H_{\text{line-cell}}$ is a set $S \subseteq L$ such that for every $c \in C$, c is not a subset of S (in other words, no cell of \mathcal{A} has its boundary formed only by lines in S). The proof is based on the following fact.

Theorem 2. There is an absolute constant $c > 0$ such that the size $\alpha(H_{\text{line-cell}})$ of the maximum independent set is at least $c\sqrt{n \log n}$.

We color the lines in \mathcal{A} so that no face is monochromatic by following the same method as in [1] (where they used the weaker version of Theorem 2 stating $\alpha(H_{\text{line-cell}}) = \Omega(\sqrt{n})$). That is, we iteratively find a large independent set of lines (whose existence is guaranteed by Theorem 2), color them with the same (new) color, and remove them from \mathcal{A}.

Clearly, this algorithm produces a valid coloring. We verify, by induction on n, that at most $\frac{2}{3}\sqrt{n/\log n}$ colors are used in this coloring. We assume the bound is valid for all $n \leq 256$ (by taking sufficiently small $c > 0$). For $n > 256$, we have $\log 4 < \frac{1}{4} \log n$. Let i be the smallest integer such that after i iterations the number of remaining lines is at most $n/4$. Since in each of these iterations at least $c\sqrt{\frac{n/4}{\log \frac{n}{4}}} \geq c\sqrt{\frac{n}{\log n}}$ vertices (lines) are removed, $i \leq \frac{n/4}{c\sqrt{\frac{n}{\log n}}} \leq \frac{\sqrt{\frac{n}{\log n}}}{\sqrt{2}c}$. Therefore, by the induction hypothesis the number of colors that the algorithm uses is at most

$$i + \frac{2}{c} \sqrt{\frac{n}{4}} \log \frac{n}{4} \leq \frac{1}{\sqrt{2}c} \sqrt{\frac{n}{\log n}} + \frac{1}{c} \sqrt{\frac{n}{\log n} - \frac{4}{3} \log n} < \frac{1}{\sqrt{2}c} \sqrt{\frac{n}{\log n} + \frac{4}{3}} + \frac{n}{c} \sqrt{\log n} < \frac{2}{c} \sqrt{\frac{n}{\log n}}.$$

The proof of Theorem 2 is based on a result on independent sets in sparse hypergraphs. Given a hypergraph H on a vertex set V, the sub-hypergraph $H[X]$ induced by $X \subseteq V$ consists of all edges of H that are contained in X. A hypergraph $H = (V,E)$ is k-uniform if every edge $e \in E$ has size k. Given a k-uniform hypergraph H and a set $S \subseteq V$ with $|S| = k - 1$, the co-degree of S is the number of all vertices $v \in V$ such that $S \cup \{v\} \in E$. Kostochka et al. [4] proved that if H is a k-uniform hypergraph, $k \geq 3$, with all co-degrees at most d, $d < n/(\log n)^{(k-1)^2}$, then $\alpha(H) \geq c_k \left(\frac{n}{\log \frac{n}{4}}\right)^{1/2}$, where $c_k > 0$.

In fact, a careful look at their proof reveals the following result, that we state for 3-uniform hypergraphs, since this is the case that we need.

Lemma 2.1 ([3]). Let $H = (V,E)$ be a 3-uniform hypergraph on $|V| = n$ vertices with all co-degrees at most d, $d < n/(\log n)^{12}$. Let X be a random subset of V, obtained by choosing each vertex of V independently with probability $p = \frac{n^{-2/5}}{(d \log \log \log n)^{3/5}}$. Let Z be a set chosen uniformly at random among all the independent sets of $H[X]$. Then, with high probability $|Z| = \Omega(\sqrt{n \log n})$.

2
With Lemma 2.1 in hand we can now prove Theorem 2.

Proof of Theorem 2. A cell of an arrangement A is called an r-cell, if r lines of L are forming its boundary. Let $H_\triangle \subset H_{\text{line-cell}}$ be the 3-uniform hypergraph with the vertex set L being the set of lines, and each hyperedge defined by the triple of lines forming the boundary of a 3-cell of A. Since any two lines can participate in the boundaries of at most four 3-cells of A, all co-degrees of H are at most $d = 4$. Now, as in Lemma 2.1, let X be a random subset of L obtained by choosing each line in L independently with probability $p = \frac{\sqrt{n^2}}{(4 \log \log \log n)^{3/5}}$. Since there are $O(n^2)$ faces in A and $O(n)$ of them are 2-cells (since every line can bound at most four such faces), expected number of 2-cells of A in $H_{\text{line-cell}}[X]$ is $O(p^2 n) = o(\sqrt{n \log n})$, and expected number of r-cells, $r \geq 4$, of A in $H_{\text{line-cell}}[X]$ is $O(p^4 n^2) = o(\sqrt{n \log n})$. From Lemma 2.1 it follows that there exists a set $Z \subset X \subset L$ of size $\Omega(\sqrt{n \log n})$, that is an independent set of $H_\triangle[X]$, and such that the number of r-cells, $r \neq 3$, of A in $H_{\text{line-cell}}[Z]$ is $o(\sqrt{n \log n})$. Removing from Z one vertex (line) for each such r-cell, we obtain an independent set of $H_{\text{line-cell}}$ of size $\Omega(\sqrt{n \log n})$.

References

