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Theorem 1.3. Every set V onsisting of n points of weight +1 and n points of weight �1in general position in the plane determines at least n balaned lines. This bound annotbe improved.The tightness of the above theorem is shown e.g. by a onvex 2n-gon, whose vertiesof weight +1 are separated from the verties of weight �1 by a straight line. In fat, wehaveTheorem 1.4. Let V be a set of 2n points in general position in the plane, onsisting ofn points of weight +1 and n points of weight �1 separated by a straight line.Then V determines preisely n balaned lines.It is suÆient to prove Theorem 1.3 in the speial ase when no two lines determinedby V are parallel, and in the sequel we assume that V satis�es this ondition.It is easy to verifyClaim 1.5. For any vertex v of the onvex hull of V , there is a balaned line passingthrough v.Proof: Let u1; : : : ; u2n�1 denote the elements of V n fvg listed in lokwise order ofvisibility from v. Suppose without loss of generality that the weight of v is positive. Ifu1 or u2n�1 has negative weight, then we are done, beause in this ase vu1 resp. vu2n�1is a balaned line. Take the line vu1; start rotating it lokwise around v, and keep trakof the total weight L of the elements of V in the open half-plane to the left of this line.At the moment when the line passes through u2, we have L = 1. Finally, the line passesthrough u2n�1 and L = �2. Every time the line passes through a new point the valueof L hanges by 1, so there is a maximum index i > 2 suh that the total weight of thepoints on the left-hand side of vui is 0. By the maximality of i, the weight of ui must benegative. Therefore, the total weight of the points on the right-hand side of vui is also0, i.e., vui is a balaned line.It may be tempting to believe that Claim 1.5 is also true for all points of V lyingin the interior of the onvex hull of V , whih would immediately imply Theorem 1.3.However, as is illustrated by Figure 1, this is not neessarily the ase.For the proof of Theorem 1.3, we need the notion of a ip array assoiated withV . (In the literature it is often alled a irular sequene or an allowable sequene ofpermutations [GP93℄.)Fix an orthogonal oordinate system (x; y) in the plane so that no two elements of Vhave the same x-oordinate. Let v1; : : : ; v2n denote the elements of V in inreasing orderof their x-oordinates. For notational onveniene, in the sequel we identify vi with i,and we write w(i) for the weight of vi. The ip array assoiated with V is a sequeneof �2n2 � + 1 permutations of the elements 1; : : : ; 2n, denoted by Pt (0 � t � �2n2 �).70



v�2v�1 v+3
v+4Figure 1: v2 is not inident to any balaned lineStart rotating a direted line l parallel to the x-axis in the lokwise diretion, andonsider the permutations determined by the order, in whih the elements of V fall onl. Originally, this order is P0 = (1; : : : ; 2n). Suppose that we have already de�ned thepermutations P0; : : : ; Pt�1 for some t � �2n2 �, and ontinue rotating l. A new permutationarises whenever l passes through a diretion orthogonal to a line lt determined by twopoints vi; vj 2 V . Then i and j are onseutive elements in Pt�1, and Pt an be obtainedfrom Pt�1 by reversing their order. Suh a move is alled a ip or a swap. After rotatingl through a half turn �, we obtain P(2n2 ) = (2n; 2n� 1; : : : ; 1), and then we stop. For any0 � t � �2n2 � and 1 � i � 2n; let pt;i denote the i-th element of Pt. That is, we havePt = (pt;1; : : : ; pt;2n).We have to introdue some further notations.De�nition 1.6. For any 0 � t � �2n2 � and 1 � i � 2n, let Lt(i) denote the sum of theweights of the �rst i� 1 elements of Pt. In other words, letLt(i) := X1�j<iw(pt;j):Similarly, let Rt(i) := Xi<j�2nw(pt;j):De�nition 1.7. For every S � f1; 2; : : : ; 2ng and 0 � t � �2n2 �, let SLt;1 < SLt;2 < : : : <SLt;jSj denote the positions in Pt oupied by the elements of S, listed from left to right. Inother words, SLt;i denotes the position of the i-th leftmost element of S in Pt. Similarly,let SRt;i denote the position of the i-th rightmost element of S in Pt. Clearly, we haveSRt;i = SLt;jSj�i+1.In our notations, the letters L and R stand for Left and Right, respetively.
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2 A standard way to obtain balaned linesLet A = fa1; : : : ; ang � f1; : : : ; 2ng denote the set of all elements of weight +1, listed ininreasing order.Call a set F � A pre�x if F = fa1; a2; : : : ; ajF jg. Similarly, H � A is said to be asuÆx set if H = fan�jHj+1; an�jHj+2; : : : ; ang.We present a \standard" method for �nding a balaned line passing through anelement of a pre�x (suÆx) set.Lemma 2.1. Let F be a pre�x set and let 1 � t � �2n2 �, and let lt denote the line induedby the two points ipped as we pass from Pt�1 to Pt.Whenever we have Lt�1(FLt�1;k) � 0 and Lt(FLt;k) < 0, then lt is a balaned line whihpasses through a point of F , and there are exatly k�1 points of F in the open half-planeto the left of lt.Proof: Let x denote the element at position FLt�1;k in Pt�1. Observe that x must swapplaes with some other element, y, when going from Pt�1 to Pt, for otherwise we wouldhave Lt�1(FLt�1;k) = Lt(FLt;k).Suppose y 2 F . Then the elements of F oupy the same positions in Pt as they doin Pt�1, exept that their internal order is di�erent. Moreover, every element, not in F ,remains at the same plae in Pt where it was in Pt�1. Thus, we would have FLt;k = FLt�1;kand Lt�1(FLt�1;k) = Lt(FLt;k), a ontradition. Therefore, we may assume that y =2 F .Assume �rst that w(y) = +1. Sine y =2 F and F is pre�x, y > x. Therefore, in Pt�1;y is at the position FLt�1;k + 1. In Pt, x is still the k-th leftmost element of F , and wehave Lt(FLt;k) = Lt�1(FLt�1;k) +w(y) = Lt�1(FLt�1;k) + 1, ontraditing the assumptions inthe lemma.We are, therefore, left with the ase when w(y) = �1. If y is at the position FLt�1;k�1in Pt�1, then Lt(FLt;k) = Lt�1(FLt�1;k) � w(y) = Lt�1(FLt�1;k) + 1, and again we reah aontradition.We onlude that y is at position FLt�1;k+1 in Pt�1. Therefore, Lt(FLt;k) = Lt�1(FLt�1;k)+w(y) = Lt�1(FLt�1;k)�1. It follows from the assumption Lt(FLt;k) < 0 and Lt�1(FLt�1;k) � 0,that Lt�1(FLt�1;k) = 0. In other words, the sum of the weights of the points lying in theopen half-plane to the left of lt is 0. Sine lt is determined by two points of oppositeweights, it follows that lt is a balaned line. By the de�nition of FLt�1;k, the line lt (whihpasses through x) has exatly k � 1 points of F in the open half-plane to its left.Similarly, we haveLemma 2.2. Let H be a suÆx set and let 1 � t � �2n2 �, and let lt denote the line induedby the two points ipped as we pass from Pt�1 to Pt.72



Whenever we have Rt�1(HRt�1;k) � 0 and Rt(HRt;k) < 0, then lt is a balaned line whihpasses through a point of H, and there are exatly k�1 points of H in the open half-planeto the right of lt.Before turning to the proof of Theorem 1.3, we establish Theorem 1.4.Proof of Theorem 1.4: Sine the points of weight +1 and �1 are separated by aline, by a proper hoie of the x-axis, we an attain that in the ip array of V the setof points of positive weight is F = f1; 2; : : : ; ng. Clearly, F is a pre�x set. Using thefat that P0 is the identity permutation, i.e., P0 = (1; 2; : : : ; 2n), we obtain that for every1 � i � jF j = n, FL0;i = i and L0(FL0;i) = i� 1 � 0.On the other hand, P(2n2 ) = (2n; 2n � 1; : : : ; 2; 1). Thus, for every 1 � i � jF j = n,FL(2n2 );i = n+ i and L(2n2 )(FL(2n2 );i) = �n� 1 + i < 0.Fix 1 � k � n. FLt;k is a ontinuous funtion of t, i.e., for every 0 < t � �2n2 �, we havejFLt;k � FLt�1;kj � 1. We laim that 0 � Lt�1(FLt�1;k)� Lt(FLt;k) � 1, whenever 1 � t � n.That is, Lt(FLt;k) is a monotone non-inreasing, ontinuous funtion of t.Let x 2 F denote the element at position FLt�1;k in Pt�1, that is, x is the k-th leftmostelement of F in Pt�1. If lt does not pass through x, then x remains the k-th leftmostelement of F in Pt, and every element to the left (right) of x in Pt�1 is to the left (right)of x in Pt. Therefore, we have Lt(FLt;k) = Lt�1(FLt�1;k).Assume that lt passes through x. In other words, x hanges plaes with anotherelement y; when going from Pt�1 to Pt. There are two possibilities:Case 1. : y 2 F .In this ase, the elements of F oupy the same positions in Pt as in Pt�1; exept thattheir internal order is di�erent. Hene, FLt;k = FLt�1;k and Lt(FLt;k) = Lt�1(FLt�1;k).Case 2. : y =2 F .Now y has weight �1. Sine x and y are ipped when we pass from Pt�1 to Pt, thepoint y is either at position FLt�1;k � 1 or at position FLt�1;k + 1 in Pt�1. The formerpossibility annot our, for if y were at position FLt�1;k � 1 in Pt�1, then x and y wouldhave been ipped earlier, whih is impossible. Thus, we an assume that y is at positionFLt�1;k+1 in Pt�1. Sine y =2 F and x is the k-th leftmost element of F in Pt�1, we obtainthat x remains the k-th leftmost element of F in Pt and FLt;k = FLt�1;k + 1. Furthermore,we have Lt(FLt;k) = Lt�1(FLt�1;k) + w(y) = Lt�1(FLt�1;k)� 1.This proves the laim that Lt(FLt;k) is monotone non-inreasing, ontinuous funtion oft. Sine L0(FL0;k) � 0 and L(2n2 )(FL(2n2 );k) < 0, it follows that there is a unique 0 < tk � �2n2 �suh that Ltk�1(FLtk�1;k) � 0 and Ltk(FLtk;k) < 0. By Lemma 2.1, ltk is a balaned linethrough an element of F; whih has exatly k � 1 elements of F in the open half-planeto its left. Obviously, lt1 ; : : : ; ltn are distint balaned lines. Next we show that if lt is a73



balaned line, then t is one of t1; : : : ; tn. By Claim 1.2, lt passes through an element xwith weight +1 and an element y with weight �1. Suppose that x is the k-th leftmostelement of F in Pt�1 (1 � k � n). Then x is at position FLt�1;k in Pt�1. Sine w(y) = �1,we have x < y. Therefore, y is at position FLt�1;k+1 in Pt�1. Sine lt is a balaned line, itfollows that Lt�1(FLt�1;k) = 0. In Pt, x is still the k-th leftmost element of F , and we haveLt(FLt;k) = Lt�1(FLt�1;k) + w(y) = �1. Sine Ls(FLs;k) is monotone noninreasing funtionof s, we onlude that t = tk.The rest of the paper is strutured as follows. In setion 3, we de�ne a pre�x set Fand a suÆx set H with some speial properties, and set G := A n (F [ H). In setions4 and 5, we show that for every 1 � k � jF j, Lt(FLt;k) hanges (as a funtion of t) from0 to �1 at least one, and, for every 1 � k � jHj, Rt(HRt;k) hanges from 0 to �1 atleast one. Applying Lemmata 2.1 and 2.2, we will obtain that there exist jF j balanedlines through the elements of F and jHj balaned lines through the elements of H. Insetion 6, we prove that every element of G = An (F [H), gives rise either to a balanedline through an element of G or to a balaned line through an element of F [ H. Weshow that all of these lines are distint, so that the number of balaned lines is at leastjF j + jGj + jHj = n. In setion 7, we wrap up the proof of Theorem 1.3, while the lastsetion ontains some onluding remarks and generalizations.3 The de�nition of F ,G, and HIn this setion, we ontinue developing the mahinery needed for the proof of Theorem1.3.De�nition 3.1. Let S � f1; 2; : : : ; 2ng and 1 � j � d jSj2 e. We say that S has a barrierof order j if one of the following two onditions is satis�ed:1. every element in S has weight +1, and(a) either Lt(SLt;j) � 0 and Rt(SRt;j) � 0, for every 0 � t � �2n2 �,(b) or Lt(SLt;j) < 0 and Rt(SRt;j) < 0, for every 0 � t � �2n2 �;2. every element in S has weight �1 and(a) either Lt(SLt;j) � 0 and Rt(SRt;j) � 0, for every 0 � t � �2n2 �,(b) or Lt(SLt;j) > 0 and Rt(SRt;j) > 0, for every 0 � t � �2n2 �.We say that S has a barrier if it has a barrier of order j for some index j.Consider all (non-empty) sets of the formf1 � i � 2nju � i � v; w(i) = �g;74



where 1 � u < v � 2n and � 2 f+1;�1g. If at least one of these sets has a barrier, pikone for whih v � u is minimum and denote it by A0. If there is no suh set, then letA0 = A, the set of all elements of weight +1.If A0 has a barrier, we may assume without loss of generality that ondition 1(a) or2(b) holds in De�nition 3.1 (for otherwise we multiply the weight of every element by�1). In other words, there exists 1 � j0 � d jA0j2 e suh thatCase 1: every element in A0 has weight +1, and Lt((A0)Lt;j0) � 0 and Rt((A0)Rt;j0) � 0, forevery 0 � t � �2n2 �; orCase 2: every element in A0 has weight �1, and Lt((A0)Lt;j0) > 0 and Rt((A0)Rt;j0) > 0, forevery 0 � t � �2n2 �.In either ase, we indutively de�ne a dereasing sequene A1 � A2 � : : : of subsets ofA as follows.For every 0 � t � �2n2 �, let t;0 := (A0)Lt;j0 and dt;0 := (A0)Rt;j0 (see De�nition 1.7). IfA�; 0;�; d0;� have already been de�ned for all 0 � � < m, letAm = fa 2 Aj0;m�1 < a < d0;m�1g:Assume that one of the following onditions is satis�ed for some 1 � j � d jAmj2 e.Case i: For every 0 � t � �2n2 � suh that max0�i<m t;i � (Am)Lt;j � min0�i<m dt;i, we haveLt((Am)Lt;j) � 0, and for every 0 � t � �2n2 � suh that max0�i<m t;i � (Am)Rt;j �min0�i<m dt;i, we have Rt((Am)Rt;j) � 0.Case ii: For every 0 � t � �2n2 � suh that max0�i<m t;i � (Am)Lt;j � min0�i<m dt;i, we haveLt((Am)Lt;j) < 0, and for every 0 � t � �2n2 � suh that max0�i<m t;i � (Am)Rt;j �min0�i<m dt;i, we have Rt((Am)Rt;j) < 0.Fix suh a number j, set jm := j, and for every 0 � t � �2n2 �, let t;m := (Am)Lt;jm anddt;m := (Am)Rt;jm .If no suh j exists or if Am = ;, stop. Let q be the index at whih we stopped. Thatis, the last set we de�ne is Aq. (If A0 does not have a barrier, then q = 0). Note that allelements of A1; A2; : : : ; Aq have weight +1, while the elements of A0 are all of weight +1or all of weight �1.If q > 0, letF := fa 2 Aja � 0;q�1g;G := Aq; (1)H := A n (F [G) = fa 2 Aja � d0;q�1g:75



If q = 0, let F = H = ; and G = A0 = fa1; : : : ; ang.Clearly, F and H are pre�x and suÆx sets, respetively.4 Useful fats about the sets AmThe following simple observation is ruial for our proposes.Claim 4.1 (ontinuity). Let S � f1; 2; : : : ; 2ng and 1 � i � jSj. Then for every1 � t � �2n2 �, we have1. jSLt;i � SLt�1;ij � 1;2. jSRt;i � SRt�1;ij � 1.Corollary 4.2. Let 0 � m < q. For every 1 � t � �2n2 �, we have1. jmax0�i�m t;i �max0�i�m t�1;ij � 1;2. jmin0�i�m dt;i �min0�i�m dt�1;ij � 1.The aim of this setion is to prove the following laim, whose parts 1 and 2 roughlyexpress that in the de�nition of jm and Am at the end of the last setion, only Case i anour. The proof is somewhat tedious but straightforward.Claim 4.3. Let 0 � m < q and 0 � t � �2n2 �.1. If max0�i<m t;i � t;m � min0�i<m dt;i, then Lt(t;m) � 0;2. if max0�i<m t;i � dt;m � min0�i<m dt;i, then Rt(dt;m) � 0;3. max0�i�m t;i < min0�i�m dt;i.Proof: We prove the laim by indution on m. Assume m = 0. Parts 1 and 2 followfrom the fat that A0 has a barrier and either 1(a) or 2(b) holds in De�nition 3.1. Part3 of the laim, stating that t;0 < dt;0, follows from the de�nitions of those numbers.Assume that all three parts of the laim have already been veri�ed for all 0 � i < m,and we want to prove it for m.
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First we prove parts 1 and 2. If either 1 or 2 is not true, then in the de�nition of AmCase ii ours. That is, for every 0 � t � �2n2 �,max0�i<m t;i � t;m � min0�i<m dt;i =) Lt(t;m) < 0 (2)max0�i<m t;i � dt;m � min0�i<m dt;i =) Rt(dt;m) < 0 (3)By de�nition, t;m < dt;m. Note that it annot happen thatmax0�i<m t;i � t;m < dt;m � min0�i<m dt;ifor every 0 � t � �2n2 �. Indeed, this would imply that Lt((Am)Lt;jm) = Lt(t;m) < 0 andRt((Am)Rt;jm) = Lt(t;m) < 0, for every 0 � t � �2n2 �. In other words, Am would have abarrier of order jm. This would ontradit the minimality of v � u in the de�nition ofA0, beause u � 0;0 < a < d0;0 � v holds for every element a 2 AmTherefore, we may assume that there is a minimal t, 0 � t � �2n2 �, suh that t+1;m <max0�i<m t+1;i. (The other ase when dt+1;m > min0�i<m dt+1;i for some t an be treatedsimilarly.)By Claim 4.1 and Corollary 4.2, it follows from the minimality of t that one of thefollowing two ases has to our.Case a: t;m = max0�i<m t;i;Case b: t;m = max0�i<m t;i + 1.Let 0 � m0 < m be an index suh that max0�i<m t;i = t;m0 . Clearly, we havemax0�i<m0 t;i � max0�i<m t;i = t;m0 ; (4)and, by the indution hypothesis,t;m0 = max0�i<m t;i < min0�i<m dt;i � min0�i<m0 dt;i: (5)Combining (4) and (5), we obtainmax0�i<m0 t;i � t;m0 � min0�i<m0 dt;i: (6)77



By the minimality of t,max0�i<m t;i � t;m � min0�i<m dt;i: (7)We disuss Cases a and b separately. In Case a, we have t;m = t;m0 . Using (6) andpart 1 of the indution hypothesis for m0, we get Lt(t;m) = Lt(t;m0) � 0. In view of (7),this ontradits (2).In Case b, we have t;m = t;m0 + 1. As before, we get Lt(t;m0) � 0. Let x 2 Am0 bethe element of Pt at the position t;m0 = t;m � 1. If all elements of Am0 have weight +1,then w(x) = +1. Therefore,Lt(t;m) = Lt(t;m0) + w(x) = Lt(t;m0) + 1 � 1:If m0 = 0 and all elements of A0 have weight �1, then, using the fat that A0 has abarrier, we �nd that Lt(t;m0) = Lt(t;0) > 0. Thus,Lt(t;m) = Lt(t;m0) + w(x) = Lt(t;m0)� 1 � 0:Hene, in either ase Lt(t;m) � 0, ontraditing (2). This ompletes the proof of parts 1and 2.Next we prove part 3. Assume for a ontradition that there is a minimal t, 0 �t < �2n2 �, suh that max1�i�m t+1;i � min1�i�m dt+1;i. By the indution hypothesis,max0�i<m t+1;i < min0�i<m dt+1;i. Therefore, without loss of generality we may assumethat max0�i<m t+1;i < t+1;m. (The other ase when dt+1;m < min0�i<m dt+1;i for some tan be treated similarly).By the minimality of t and by Corollary 4.2, again there are only two possibilities.Case a: max0�i�m t+1;i = min1�i�m dt+1;i,Case b: max0�i�m t+1;i = min1�i�m dt+1;i + 1.In Case a,max0�i<m t+1;i < t+1;m = min0�i�m dt+1;i = min0�i<m dt+1;i; (8)where the last equality follows from the fat that t+1;m < dt+1;m.Let m0 < m be suh that min0�i<m dt+1;i = dt+1;m0 . Then we havedt+1;m0 = min0�i<m dt+1;i � min0�i<m0 dt+1;i;78



and, by indution hypothesis,max0�i<m0 t+1;i � max0�i<m t+1;i < min0�i<m dt+1;i = dt+1;m0:Combining the last two inequalities, we obtainmax0�i<m0 t+1;i � dt+1;m0 � min0�i<m0 dt+1;i:This, together with part 2 of the laim for m0, implies that Rt+1(dt+1;m0) � 0. Let x bethe element in Pt+1 at the position dt+1;m0 = t+1;m. By the de�nition of t+1;m; x belongsto Am, and therefore w(x) = +1. ThenLt+1(t+1;m) = Lt+1(dt+1;m0) = �(w(x) +Rt+1(dt+1;m0)) = �1�Rt+1(dt+1;m0) � �1where the seond equality follows from the fat that the sum of all weights is 0. This,together with (8), ontradits part 1 of the laim.In Case b, it follows from the minimality of t and Corollary 4.2 thatmax0�i�m t;i = min0�i�m dt;i � 1: (9)Sine t+1;m < dt+1;m, we havet+1;m = max0�i�m t+1;i = min1�i�m dt+1;i + 1 = min1�i<m dt+1;i + 1;and, by the indution hypothesis,max0�i<m t+1;i + 1 < min0�i<m dt+1;i + 1 = t+1;mTherefore, max0�i<m t+1;i+2 � t+1;m and, by Claim 4.1, we obtain max0�i<m t;i � t;m.This, together with (9), implies thatt;m = max0�i�m t;i = min0�i�m dt;i � 1 = dt;m0 � 1; (10)where m0 � m is suh that min0�i�m dt;i = dt;m0. Then we havemax0�i<m0 t;i � max0�i�m t;i < dt;m0 = min0�i�m dt;i � min0�i<m0 dt;i:79



Here the seond inequality follows from (10). So, by part 1 of the laim for m0,Rt(dt;m0) � 0:Let x 2 Am0 be the element in Pt at the position dt;m0. In view of (10),Rt(t;m) = Rt(dt;m0) + w(x):If all elements of Am0 have weight +1, then w(x) = +1, and thusRt(t;m) = Rt(dt;m0) + 1 � 1:If m0 = 0 and all elements of A0 have weight �1, thenRt(t;m) = Rt(dt;0)� 1 � 0;beause Rt(dt;0) = Rt((A0)Rt;j0) > 0, by the de�nition of A0. In either ase, Rt(t;m) � 0.Let y 2 Am be the element in Pt at the position t;m. Then w(y) = +1, thereforeLt(t;m) = �(w(y) +Rt(t;m)) = �(1 +Rt(t;m)) < 0:This, ombined with (10), ontradits part 1 of the laim, ompleting the proof.Notation 4.4. For every 0 � t � �2n2 �, let Ct = max0�i<q t;i and Dt = min0�i<q dt;i.Corollary 4.5. For every 0 � t � �2n2 �, we have1. Lt(Ct) � 0 and Rt(Dt) � 0,2. Lt(Ct + 1) � 0 and Rt(Dt � 1) � 0.Proof: Fix 0 � t � �2n2 �. We prove only the �rst assertion of part 1; the proof of theseond assertion is very similar. Choose 0 � m < q so that Ct = t;m. Then we havemax0�i<m t;i � max0�i<q t;i = t;m = max0�i<q t;i < min0�i<q dt;i � min0�i<m dt;i;where the seond inequality follows from part 3 of Claim 4.3. Thus, part 1 of Claim 4.3immediately implies that Lt(Ct) = Lt(t;m) � 0:Next we prove the �rst assertion of part 2. Again, hoose 0 � m < q so that Ct = t;m.By part 1, Lt(t;m) � 0. Let x 2 Am be the element in Pt at the position t;m. If m 6= 0or m = 0 and all elements of A0 have weight +1, then w(x) = +1. Therefore,Lt(Ct + 1) = Lt(t;m + 1) = Lt(t;m) + w(x) = Lt(t;m) + 1 � 1:If m = 0 and all elements of A0 have weight �1, then w(x) = �1. Reall that, aordingto the de�nition of A0 and t;0, we have Lt(t;0) > 0. Thus,Lt(Ct + 1) = Lt(t;0 + 1) = Lt(t;0) + w(x) = Lt(t;0)� 1 � 0;as required. The seond assertion of part 2 an be veri�ed analogously.80



5 Balaned lines through the points of F and HUsing Notation 4.4, we an rewrite the de�nition of F ,G, and H (at the end of setion3) as follows.F = fi 2 Aji � C0g;G = Aq = A n (F [H); (11)H = fi 2 Aji � D0g:In this setion we show that for every 1 � k � jF j, as t goes from 0 to �2n2 �, Lt(FLt;k)hanges from 0 to �1 at least one. Similarly, for every 1 � k � jHj, Rt(HRt;k) hangesfrom 0 to �1 at least one. Thus, Lemmata 2.1 and 2.2 imply that the number ofbalaned lines passing through some element of F (and H) is at least jF j (at least jHj,respetively).De�nition 5.1. For any 1 � k � jF j; let t(F; k) denote the minimal t suh that FLt;k � Ct,and let T (F; k) denote the maximal t suh that FLt;k � Dt.Similarly, for any 1 � k � jHj, let t(H; k) (and T (H; k)) denote the minimal t suhthat HRt;k � Dt (the maximal t suh that HRt;k � Ct, respetively).First we show that the above de�nition is orret.Claim 5.2. The numbers t(F; k); T (F; k); t(H; k); T (H; k) exist.Proof: We prove only the existene of t(F; k) and T (F; k). By (11), we have FL0;k � C0,for every 1 � k � jF j. It follows from part 3 of Claim 4.3, that Ct < Dt, for every0 � t � �2n2 �. Therefore, it suÆes to show that FL(2n2 );k � D(2n2 ).Assume 0 � m < q, where q is the same as in (1). Denote by x the element at theposition 0;m = (Am)L0;jm in P0. Then x is the jm'th leftmost element of Am in P0. P(2n2 )is a reversed opy of P0, i.e., P(2n2 ) = (2n; 2n � 1; : : : ; 2; 1). Therefore, in P(2n2 ), x is thejm'th rightmost element of Am. In other words, x is at position d(2n2 );m = (Am)R(2n2 );jm inP(2n2 ).For every 0 � m < q, let xm denote the element at position 0;m in P0. By thede�nition of the sets A0; A1; : : : ; Aq�1, we have x0 < x1 < : : : < xq�1. Thus, for every0 � m < q, xm is at position d(2n2 );m in P(2n2 ). Sine in P(2n2 ) the numbers x0; : : : ; xq�1 arein reversed order, we may onlude that d(2n2 );q�1 < d(2n2 );q�2 < : : : < d(2n2 );0.Let y 2 F . By the de�nition of F , we have y � C0 = 0;q�1. Therefore, y � xq�1and hene y is at a position greater or equal to the position of xq�1 in P(2n2 ), whih isd(2n2 );q�1 = D(2n2 ). In partiular, it follows that FL(2n2 );k � D(2n2 ) for every 1 � k � jF j.81



De�nition 5.3. For any 1 � k � jF j, let �(F; k) denote the number of di�erent values oft for whih t(F; k) < t � T (F; k), and whih satisfy Lt�1(FLt�1;k) = �1 and Lt(FLt;k) = 0.Similarly, for any 1 � k � jHj, let �(H; k) denote the number of di�erent values of tfor whih t(F; k) < t � T (F; k), and whih satisfy Rt�1(HRt�1;k) = �1 and Rt(HRt;k) = 0.Lemma 5.4. For any 1 � k � jF j, there are at least 1+ �(F; k) balaned lines l meetingthe following two requirements.1. l passes through a point of F ,2. there are exatly k � 1 points of F in the open half-plane whih is to the left of l.Proof: Aording to Lemma 2.1 (and using the ontinuity of Lt(FLt;k), as a funtion oft), it is enough to show that Lt(F;k)(FLt(F;k);k) � 0 and LT (F;k)(FLT (F;k);k) < 0.Let t0 = t(F; k). By the de�nition of t(F; k) we have, FLt0;k � Ct0 . If t0 = 0, thenFLt0;k = Ct0 (for FL0;k � C0). If t0 > 0 then, by the minimality of t(F; k), FLt0�1;k < Ct0�1.Therefore, by Corollary 4.2, either FLt0;k = Ct0 or FLt0;k = Ct0 + 1.We onlude that in both ases either FLt0;k = Ct0 or FLt0;k = Ct0 + 1. In either ase,we use Corollary 4.5, to argue that Lt0(FLt0;k) � 0.Similarly, let t1 = T (F; k). Then, by the maximality of T (F; k), either FLt1 ;k = Dt1 orFLt1;k = Dt1 � 1. In either ase, Corollary 4.5 implies Rt1(FLt1;k) � 0. Let x be the elementin Pt1 at the position FLt1 ;k. Then x 2 F and hene w(x) = 1. Therefore,Lt1(FLt1;k) = �(w(x) +Rt1(FLt1;k)) = �1�Rt1(FLt1;k) < 0:Similarly, we haveLemma 5.5. For any 1 � k � jHj, there are at least 1+�(H; k) balaned lines l meetingthe following two requirements.1. l passes through a point of H,2. there are exatly k� 1 points of H in the open half-plane whih is to the right of l.6 The ontribution of GIn this setion, we estimate from below the ontribution of G to the number of balanedlines. We prove (Lemma 6.2) that there are at least jGj di�erent values of t, for whiheither Lt(GLt;k) or Rt(GRt;k) hanges from �1 to 0 or vie versa (for some k, as we go fromt � 1 to t). Then we show (Claim 6.4) that for eah suh t, either lt is a balaned linethrough an element of G orP1�k�jF j �(F; k)+P1�k�jHj �(H; k) inreased by 1. However,in the latter ase we �nd a new balaned line through an element of F [H.We need an auxiliary lemma. 82



Lemma 6.1. Let 1 � k � d jGj2 e and t0 < t1. Suppose that Ct0 � GLt0;k � Dt0 andCt1 � GLt1;k � Dt1 .(a) If Lt0(GLt0;k) � 0 and Lt1(GLt1;k) < 0, then there is an integer t satisfyingt0 < t � t1; Ct�1 � GLt�1;k � Dt�1; andCt � GLt;k � Dt (12)suh that Lt�1(GLt�1;k) = 0 and Lt(GLt;k) = �1;(b) if Lt0(GLt0;k) < 0 and Lt1(GLt1;k) � 0, then there is an integer t satisfying 12 suhthat Lt�1(GLt�1;k) = �1 and Lt(GLt;k) = 0;() if Rt0(GRt0;k) � 0 and Rt1(GRt1;k) < 0, then there is an integer t satisfying 12 suhthat Rt�1(GRt�1;k) = 0 and Rt(GRt;k) = �1;(d) if Rt0(GRt0;k) < 0 and Rt1(GRt1;k) � 0, then there is an integer t satisfying 12 suhthat Rt�1(GRt�1;k) = �1 and Rt(GRt;k) = 0.Proof: By symmetry, it is enough to disuss the ase Lt0(GLt0;k) � 0 and Lt1(GLt1;k) < 0.(The other ases an be treated similarly.)Let t be the minimum integer in (t0; t1℄, for whih Lt(GLt;i) < 0 and Ct � GLt;k � Dt.We show that t meets the requirements of the lemma.If Ct�1 � GLt�1;k � Dt�1, then Lt�1(GLt�1;k) = 0, by the minimality of t, and we aredone.Otherwise, we distinguish two ases.Case 1: GLt�1;k < Ct�1;Case 2: GLt�1;k > Dt�1.Sine Ct � GLt;k � Dt, it follows from Corollary 4.2 that in Case 1 either GLt;k = Ct orGLt;k = Ct + 1; and in Case 2 either GLt;k = Dt or GLt;k = Dt � 1.Case 1 is impossible, beause Lt(GLt;k) < 0, while, by Corollary 4.5, Lt(Ct) � 0 andLt(Ct + 1) � 0. Contradition.In Case 2, let t0 be the maximum integer in [t0; t � 1) suh that GLt0;k � Dt0 . Bythe maximality of t0 and by Corollary 4.2, GLt0;k is either Dt0 or Dt0 � 1. In either ase,Corollary 4.5 implies that Rt0(GLt0;i) � 0. Therefore, denoting by x the element in Pt0 atposition GLt0;k, we haveLt0(GLt0;k) = �(w(x) +Rt0(GLt0;k)) = �(1 +Rt0(GLt0;k)) < 0:Moreover, we have Ct0 � GLt0;k � Dt0 . Thus, t0 ontradits the minimality of t.(Observe that t0 6= t0, beause Lt0(GLt0;k) < 0; while Lt0(GLt0;k) � 0.)83



Lemma 6.2. Let 1 � k � b jGj2 . Then there exist 0 < t1k; t2k � �2n2 �, t1k 6= t2k, suh thatfor t 2 ft1k; t2kg, preisely one of the following two onditions is satis�ed.1. fLt�1(GLt�1;k); Lt(GLt;k)g = f0;�1g, Ct�1 � GLt�1;k � Dt�1, and Ct � GLt;k � Dt;2. fRt�1(GRt�1;k); Rt(GRt;k)g = f0;�1g, Ct�1 � GRt�1;k � Dt�1, and Ct � GRt;k � Dt.Furthermore, if jGj is odd and k = jGj+12 , then there exists at least one t = tk,0 � t � �2n2 �, satisfying ondition 1 or 2.All numbers t1k; t2k; tk having the above properties are di�erent for di�erent values ofk.Proof: Suppose �rst that L0(GL0;k) � 0 and R0(GR0;k) < 0. Sine P(2n2 ) is a reversed opyof P0, we have that L(2n2 )(GL(2n2 );k) = R0(GR0;k) < 0. By the de�nition of G, for every1 � j � jGj, C0 � GL0;j � D0 so that C(2n2 ) � GL(2n2 );j � D(2n2 ). Therefore, Lemma 6.1implies that there exists t1k for whih ondition 1 of Lemma 6.2 holds.To prove the existene of t2k, note that R(2n2 )(GR(2n2 );k) = L0(GL0;k) � 0. Now Lemma6.1 implies that there exists t2k satisfying ondition 2 of Lemma 6.2.Next, suppose that L0(GL0;k) � 0 and R0(GR0;k) � 0.Then L(2n2 )(GL(2n2 );k) = R0(GR0;k) � 0 and R(2n2 )(GR(2n2 );k) = L0(GL0;k) � 0. By theonstrution of G, at least one of the following two onditions is satis�ed:(i) there exist t0; t1 suh that Lt0(GLt0;k) � 0, Lt1(GLt1;k) < 0, Ct0 � GLt0;k � Dt0 , andCt1 � GLt1;k � Dt1 ;(ii) there exist t0; t1 suh that Rt0(GRt0;k) � 0, Rt1(GRt1;k) < 0, Ct0 � GRt0;k � Dt0 , andCt1 � GRt1;k � Dt1 .If (i) holds, then part (a) and (b) of Lemma 6.1 imply that there exist t1k and t2k, 0 <t1k � t1 < t2k � �2n2 �, for whih ondition 1 of Lemma 6.2 is satis�ed.If (ii) holds then, similarly, ondition 2 of Lemma 6.2 an be derived from parts ()and (d) of Lemma 6.1.The remaining ases an be settled in the same way. Note that the above argumentalso applies when k = jGj+12 , but in this ase t1k and t2k may oinide.We prove the last statement of Lemma 6.2 by ontradition. Suppose, e.g., thatthere are two integers 1 � k 6= k0 � d jGj2 e suh that tk 2 ft1k; t2kg; tk0 2 ft1k0; t2k0g, andtk = tk0 = t. If t satis�es ondition 1 of the lemma, then Lt�1(GLt�1;k) 6= Lt(GLt;k). In this84



ase, lt passes through a unique element of G. Indeed, if lt passed through two elements ofG or no element ofG, we would have GLt�1;k = GLt;k and hene also Lt�1(GLt�1;k) = Lt(GLt;k).Moreover, this unique element of G is at position GLt�1;k in Pt�1.Similarly, if ondition 2 is satis�ed, then lt passes through a unique element of G,whih is at position GRt�1;k in Pt�1. Therefore, if t = tk = tk0, we have fGLt�1;k; GRt�1;kg \fGLt�1;k0; GRt�1;k0g 6= ;, whih is a ontradition, as 1 � k 6= k0 � d jGj2 e.Notation 6.3. For any S � f1; 2; : : : ; 2ng; let bal(S) denote the number of balanedlines passing through at least one point of S.Claim 6.4. jGj �P1�k�jF j �(F; k) +P1�k�jHj �(H; k) + bal(G)Proof: Let 1 � k � d jGj2 e, and let t be one of the values t1k; t2k; whose existene isguaranteed by Lemma 6.2. (Note that in ase k = jGj+12 there is only one suh value.)Then Ct�1 � GLt�1;k � Dt�1, and Ct � GLt;k � Dt. There are four possibilities:1. (a) Lt�1(GLt�1;k) = 0 and Lt(GLt;k) = �1,(b) Lt�1(GLt�1;k) = �1 and Lt(GLt;k) = 0,2. (a) Rt�1(GRt�1;k) = 0 and Rt(GRt;k) = �1,(b) Rt�1(GRt�1;k) = �1 and Rt(GRt;k) = 0.For simpliity, we onsider only ase 1(a). Let x denote the element at position GLt�1;kin Pt�1. Sine x 2 G, we have w(x) = +1. Pt�1 and Pt di�er in two onseutive plaes;one of them is oupied by x. Let y denote the element at the other plae. Obviously, ltpasses through x and y. We distinguish two ases.Case 1: w(y) = �1.Clearly, y =2 G, so x is at position GLt;k in Pt. Sine Lt(GLt;k) < Lt�1(GLt�1;k), it followsthat y > x. That is, Lt(GLt;k) = Lt�1(GLt�1;k)+w(y). Consequently, the sum of the weightsof the points of V in the open half-plane to the left of lt, is 0. Sine w(x) + w(y) = 0, ltmust be a balaned line.Case 2: w(y) = +1.Now y =2 G, for otherwise Lt(GLt;k) = Lt�1(GLt�1;k).Using the fat that Lt(GLt;k) < Lt�1(GLt�1;k), we obtain that y < x. That is Lt(GLt;k) =Lt�1(GLt�1;k)�w(y). Sine y =2 G and y < x, we have y 2 F . Let 1 � s � jF j denote theinteger for whih y is the s-th leftmost element of F in Pt�1 and hene also in Pt. Nowit follows that Lt�1(FLt�1;s) = �1 and Lt(FLt;s) = 0. We show that t(F; s) < t � T (F; s),whih implies that when x and y are swapped, �(F; s) inreases by 1.85



To see that t(F; s) < t, it is enough to prove that Ct�1 � FLt�1;s. Sine Lt(GLt;k) = �1,using Corrolary 4.5 and the fat that Ct � GLt;k we have Ct+2 � GLt;k. Now GLt;k = FLt;s�1,so that Ct + 3 � FLt;s. It follows from Claim 4.1 and Corrolary 4.2 that Ct�1 < FLt�1;s.To see that t � T (F; s), it is enough to prove that FLt;s � Dt. Now Rt�1(GLt�1;k) =�(Lt�1(GLt�1;k) + w(x)) < 0. Sine GLt�1;k � Dt�1, it follows from Corrolary 4.5 thatGLt�1;k � Dt�1 � 2. We have FLt�1;s = GLt�1;k � 1, so that FLt�1;s � Dt�1 � 3. It followsfrom Claim 4.1 and Corrolary 4.2 that FLt;s � Dt � 1.Summarizing, we have shown that for every value of t, whose existene is guaran-teed by Lemma 6.2, either lt is a distint balaned line through an element of G, or tontributes 1 to the sum P1�k�jF j �(F; k) +P1�k�jHj �(H; k).7 Proof of the Theorem 1.3Now we are in a position to omplete the proof of Theorem 1.3. Sine F [G [H is theset of all elements of weight +1, by Claim 1.2 we have that the number of balaned linesis equal to bal(F ) + bal(H) + bal(G). By Lemmata 5.4 and 5.5, we havebal(F ) � X1�k�jF j(1 + �(F; k)); bal(H) � X1�k�jHj(1 + �(H; k)):Therefore, in view of Claim 6.4, the number of balaned lines isbal(F ) + bal(H) + bal(G) � X1�k�jF j(1 + �(F; k)) + X1�k�jHj(1 + �(H; k)) + bal(G)= jF j+ jHj+0� X1�k�jF j �(F; k) + X1�k�jHj �(H; k) + bal(G)1A� jF j+ jHj+ jGj = n:8 Conluding remarksTheorem 1.3 does not remain true without assuming that the points are in general posi-tion. It is not hard to onstrut sets of n points of weight +1 and n points of weight �1whih determine no balaned line.Theorem 1.3 an be rephrased in the following dual form. Consider n lines of weight+1 and n lines of weight �1 in general position in the plane, i.e., no three of them passthrough the same point, no two are parallel, and none of them is vertial (parallel to they-axis). Then they determine at least n intersetion points p with the property that the86
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Figure 2: A 2-olored point set with a unique balaned halving linesum of the weights of all lines above p, as well as the sum of the weights of all lines belowp, is equal to zero. This statement an also be formulated for x-monotone pseudo-linesinstead of lines (a pseudo-line is alled x-monotone if every vertial line intersets it inpreisely one point). This version remains valid, beause as we sweep the plane by avertial line from left to right, the order in whih it meets the pseudo-lines determines aip array, and our proof applies.Let V be a set of points in general position in the plane, having an even number ofelements. A line l onneting two points of V is alled a halving line, if it uts V intotwo equal halves, i.e., if both open half-planes bounded by l ontain preisely jV j=2� 1elements of V .The following simple fat is an easy onsequene of the Ham-sandwih Theorem (fora similar argument, see [AA89℄).Claim 8.1. Let V onsist of n points of weight +1 and n points of weight �1 in generalposition in the plane. If n is odd, then V permits a balaned halving line l.Proof: Replae eah point v 2 V by a dis of area 1=N entered at v, where N is asuÆiently large integer. Let D+ and D� denote the union of all diss whih orrespondto the elements of V with positive and negative weights, respetively. By the Ham-sandwih Theorem, there is a straight line l(N) suh that the area of the intersetionof D+ with any half-plane bounded by l(N) is n=(2N), and the same is true for D�.Choose an in�nite sequene N(1) < N(2) < : : : suh that the orresponding lines l(Ni)onverge to a straight line l, as i tends to in�nity. Clearly, l must onnet a point ofpositive weight weight with a point of negative weight, and it meets the requirements inthe laim.It is not hard to ome up with a point set V satisfying the onditions in Lemma 8.1,whih permits only one balaned halving line. (See Figure 2.)The above argument easily generalizes to any d-dimensional set V in general position,whose elements are olored with d olors. However, the analogue of Theorem 1.3 doesnot hold in 3 and higher dimensions. 87



De�nition 8.2. A set of points in d-spae is said to be in general position, if no d + 1of them lie on a hyperplane.Let U = U1 [ : : :[ Ud be a set of dn points in general position in d-spae, where eahUi onsists of n points and is alled a olor lass.A hyperplane h determined by (d elements of) V is alled balaned if eah openhalf-spae bounded by h ontains the same number of elements from eah olor lass.Obviously, all points a balaned hyperplane are of di�erent olors. By straightforwardgeneralization of the proof of Claim 8.1, we also obtain that if n is odd, then U =U1 [ : : : [ Ud always permits at least one balaned halving hyperplane.Claim 8.3. For every d � 3, there exists a set U of dn points in general position ind-spae, whih onsists of d olor lasses of size n and satis�es the following ondition:(i) if n is even, then U does not permit a balaned hyperplane;(ii) if n is odd, then U permits preisely one balaned hyperplane.Proof: We present the onstrution only for d = 3; the other onstrutions are verysimilar.Suppose �rst that n is even. Let fa; b; ; dg be the vertex set of a regular tetrahedronentered at o. Replae a; b; ; d and o by �ve point sets, A;B;C;D; and O, respetively.Suppose that eah of these sets is equally spaed along a line parallel to od, with asuÆiently small distane " > 0, and let jAj = jBj = jCj = jDj = n=2; and jOj = n.Finally, slightly perturb the points so that A[B [C [D[O will be in general position.Let U1 := A [ B; U2 := C [ D; and U3 := O. Suppose, in order to obtain aontradition, that U := U1 [ U2 [ U3 permits a balaned hyperplane h. Clearly, h mustpass through three points of di�erent olors, say, u 2 A; v 2 C; and w 2 O. Now B andD are on di�erent sides of h, whih implies that both open half-spaes bounded by hmust ontain at least n=2 points of eah olor. Counting the points u; v; and w belongingto h, eah olor lass has at least n+ 1 elements, a ontradition.If n is odd, then the onstrution is the same, exept that jAj = jCj = (n+ 1)=2 andjBj = jDj = (n� 1)=2: Now a balaned hyperplane h must pass through one element ineah of the sets A;C; and O, say, u; v; and w; resp. Moreover, sine there are at least(n� 1)=2 elements of U2 in the open half-spae opposite to D, v must be the last pointof C in the diretion od. Similarly, u is the last point of A in the same diretion, and wis also uniquely determined.Referenes[AA89℄ J. Akiyama and N. Alon, Disjoint simplies and geometri hypergraphs, in: Com-binatorial Mathematis, Pro. Third Internat. Conferene (G. Bloom, R. Graham,and J. Malkevith, eds.), Ann. New York Aad. S. 555 (1989), 1{3.88
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