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tGiven a set of n bla
k and n white points in general position in the plane, a linel determined by them is said to be balan
ed if ea
h open half-plane bounded by l
ontains pre
isely the same number of bla
k points as white points. It is provedthat the number of balan
ed lines is at least n. This settles a 
onje
ture of GeorgeBaloglou.1 Introdu
tionThroughout this paper, let V be a set of 2n points in general position in the plane, i.e.,assume that no three of them are on a line. Suppose that half of the points have weight+1 and the other half weight �1. We say that a line passing through two elements of Vis determined by V .De�nition 1.1. A line l determined by V is 
alled balan
ed if in ea
h open half-planebounded by l the total weight of the points is 0.The following observation is an immediate 
onsequen
e of the de�nition.Claim 1.2. If two points determine a balan
ed line l, then they have opposite weights.Indeed, sin
e the total weight of the points as well as the total weight of all pointsnot on l is 0, it follows that the sum of the weights of the two points on l must be 0, too.In view of the 
laim, the number of balan
ed lines determined by V 
annot ex
eedn2. This bound is attained by many 
on�gurations, in
luding every 
onvex 2n-gon whoseverti
es are of weight +1 and �1, alternately.The aim of this paper is to prove the following 
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Theorem 1.3. Every set V 
onsisting of n points of weight +1 and n points of weight �1in general position in the plane determines at least n balan
ed lines. This bound 
annotbe improved.The tightness of the above theorem is shown e.g. by a 
onvex 2n-gon, whose verti
esof weight +1 are separated from the verti
es of weight �1 by a straight line. In fa
t, wehaveTheorem 1.4. Let V be a set of 2n points in general position in the plane, 
onsisting ofn points of weight +1 and n points of weight �1 separated by a straight line.Then V determines pre
isely n balan
ed lines.It is suÆ
ient to prove Theorem 1.3 in the spe
ial 
ase when no two lines determinedby V are parallel, and in the sequel we assume that V satis�es this 
ondition.It is easy to verifyClaim 1.5. For any vertex v of the 
onvex hull of V , there is a balan
ed line passingthrough v.Proof: Let u1; : : : ; u2n�1 denote the elements of V n fvg listed in 
lo
kwise order ofvisibility from v. Suppose without loss of generality that the weight of v is positive. Ifu1 or u2n�1 has negative weight, then we are done, be
ause in this 
ase vu1 resp. vu2n�1is a balan
ed line. Take the line vu1; start rotating it 
lo
kwise around v, and keep tra
kof the total weight L of the elements of V in the open half-plane to the left of this line.At the moment when the line passes through u2, we have L = 1. Finally, the line passesthrough u2n�1 and L = �2. Every time the line passes through a new point the valueof L 
hanges by 1, so there is a maximum index i > 2 su
h that the total weight of thepoints on the left-hand side of vui is 0. By the maximality of i, the weight of ui must benegative. Therefore, the total weight of the points on the right-hand side of vui is also0, i.e., vui is a balan
ed line.It may be tempting to believe that Claim 1.5 is also true for all points of V lyingin the interior of the 
onvex hull of V , whi
h would immediately imply Theorem 1.3.However, as is illustrated by Figure 1, this is not ne
essarily the 
ase.For the proof of Theorem 1.3, we need the notion of a 
ip array asso
iated withV . (In the literature it is often 
alled a 
ir
ular sequen
e or an allowable sequen
e ofpermutations [GP93℄.)Fix an orthogonal 
oordinate system (x; y) in the plane so that no two elements of Vhave the same x-
oordinate. Let v1; : : : ; v2n denote the elements of V in in
reasing orderof their x-
oordinates. For notational 
onvenien
e, in the sequel we identify vi with i,and we write w(i) for the weight of vi. The 
ip array asso
iated with V is a sequen
eof �2n2 � + 1 permutations of the elements 1; : : : ; 2n, denoted by Pt (0 � t � �2n2 �).70



v�2v�1 v+3
v+4Figure 1: v2 is not in
ident to any balan
ed lineStart rotating a dire
ted line l parallel to the x-axis in the 
lo
kwise dire
tion, and
onsider the permutations determined by the order, in whi
h the elements of V fall onl. Originally, this order is P0 = (1; : : : ; 2n). Suppose that we have already de�ned thepermutations P0; : : : ; Pt�1 for some t � �2n2 �, and 
ontinue rotating l. A new permutationarises whenever l passes through a dire
tion orthogonal to a line lt determined by twopoints vi; vj 2 V . Then i and j are 
onse
utive elements in Pt�1, and Pt 
an be obtainedfrom Pt�1 by reversing their order. Su
h a move is 
alled a 
ip or a swap. After rotatingl through a half turn �, we obtain P(2n2 ) = (2n; 2n� 1; : : : ; 1), and then we stop. For any0 � t � �2n2 � and 1 � i � 2n; let pt;i denote the i-th element of Pt. That is, we havePt = (pt;1; : : : ; pt;2n).We have to introdu
e some further notations.De�nition 1.6. For any 0 � t � �2n2 � and 1 � i � 2n, let Lt(i) denote the sum of theweights of the �rst i� 1 elements of Pt. In other words, letLt(i) := X1�j<iw(pt;j):Similarly, let Rt(i) := Xi<j�2nw(pt;j):De�nition 1.7. For every S � f1; 2; : : : ; 2ng and 0 � t � �2n2 �, let SLt;1 < SLt;2 < : : : <SLt;jSj denote the positions in Pt o

upied by the elements of S, listed from left to right. Inother words, SLt;i denotes the position of the i-th leftmost element of S in Pt. Similarly,let SRt;i denote the position of the i-th rightmost element of S in Pt. Clearly, we haveSRt;i = SLt;jSj�i+1.In our notations, the letters L and R stand for Left and Right, respe
tively.
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2 A standard way to obtain balan
ed linesLet A = fa1; : : : ; ang � f1; : : : ; 2ng denote the set of all elements of weight +1, listed inin
reasing order.Call a set F � A pre�x if F = fa1; a2; : : : ; ajF jg. Similarly, H � A is said to be asuÆx set if H = fan�jHj+1; an�jHj+2; : : : ; ang.We present a \standard" method for �nding a balan
ed line passing through anelement of a pre�x (suÆx) set.Lemma 2.1. Let F be a pre�x set and let 1 � t � �2n2 �, and let lt denote the line indu
edby the two points 
ipped as we pass from Pt�1 to Pt.Whenever we have Lt�1(FLt�1;k) � 0 and Lt(FLt;k) < 0, then lt is a balan
ed line whi
hpasses through a point of F , and there are exa
tly k�1 points of F in the open half-planeto the left of lt.Proof: Let x denote the element at position FLt�1;k in Pt�1. Observe that x must swappla
es with some other element, y, when going from Pt�1 to Pt, for otherwise we wouldhave Lt�1(FLt�1;k) = Lt(FLt;k).Suppose y 2 F . Then the elements of F o

upy the same positions in Pt as they doin Pt�1, ex
ept that their internal order is di�erent. Moreover, every element, not in F ,remains at the same pla
e in Pt where it was in Pt�1. Thus, we would have FLt;k = FLt�1;kand Lt�1(FLt�1;k) = Lt(FLt;k), a 
ontradi
tion. Therefore, we may assume that y =2 F .Assume �rst that w(y) = +1. Sin
e y =2 F and F is pre�x, y > x. Therefore, in Pt�1;y is at the position FLt�1;k + 1. In Pt, x is still the k-th leftmost element of F , and wehave Lt(FLt;k) = Lt�1(FLt�1;k) +w(y) = Lt�1(FLt�1;k) + 1, 
ontradi
ting the assumptions inthe lemma.We are, therefore, left with the 
ase when w(y) = �1. If y is at the position FLt�1;k�1in Pt�1, then Lt(FLt;k) = Lt�1(FLt�1;k) � w(y) = Lt�1(FLt�1;k) + 1, and again we rea
h a
ontradi
tion.We 
on
lude that y is at position FLt�1;k+1 in Pt�1. Therefore, Lt(FLt;k) = Lt�1(FLt�1;k)+w(y) = Lt�1(FLt�1;k)�1. It follows from the assumption Lt(FLt;k) < 0 and Lt�1(FLt�1;k) � 0,that Lt�1(FLt�1;k) = 0. In other words, the sum of the weights of the points lying in theopen half-plane to the left of lt is 0. Sin
e lt is determined by two points of oppositeweights, it follows that lt is a balan
ed line. By the de�nition of FLt�1;k, the line lt (whi
hpasses through x) has exa
tly k � 1 points of F in the open half-plane to its left.Similarly, we haveLemma 2.2. Let H be a suÆx set and let 1 � t � �2n2 �, and let lt denote the line indu
edby the two points 
ipped as we pass from Pt�1 to Pt.72



Whenever we have Rt�1(HRt�1;k) � 0 and Rt(HRt;k) < 0, then lt is a balan
ed line whi
hpasses through a point of H, and there are exa
tly k�1 points of H in the open half-planeto the right of lt.Before turning to the proof of Theorem 1.3, we establish Theorem 1.4.Proof of Theorem 1.4: Sin
e the points of weight +1 and �1 are separated by aline, by a proper 
hoi
e of the x-axis, we 
an attain that in the 
ip array of V the setof points of positive weight is F = f1; 2; : : : ; ng. Clearly, F is a pre�x set. Using thefa
t that P0 is the identity permutation, i.e., P0 = (1; 2; : : : ; 2n), we obtain that for every1 � i � jF j = n, FL0;i = i and L0(FL0;i) = i� 1 � 0.On the other hand, P(2n2 ) = (2n; 2n � 1; : : : ; 2; 1). Thus, for every 1 � i � jF j = n,FL(2n2 );i = n+ i and L(2n2 )(FL(2n2 );i) = �n� 1 + i < 0.Fix 1 � k � n. FLt;k is a 
ontinuous fun
tion of t, i.e., for every 0 < t � �2n2 �, we havejFLt;k � FLt�1;kj � 1. We 
laim that 0 � Lt�1(FLt�1;k)� Lt(FLt;k) � 1, whenever 1 � t � n.That is, Lt(FLt;k) is a monotone non-in
reasing, 
ontinuous fun
tion of t.Let x 2 F denote the element at position FLt�1;k in Pt�1, that is, x is the k-th leftmostelement of F in Pt�1. If lt does not pass through x, then x remains the k-th leftmostelement of F in Pt, and every element to the left (right) of x in Pt�1 is to the left (right)of x in Pt. Therefore, we have Lt(FLt;k) = Lt�1(FLt�1;k).Assume that lt passes through x. In other words, x 
hanges pla
es with anotherelement y; when going from Pt�1 to Pt. There are two possibilities:Case 1. : y 2 F .In this 
ase, the elements of F o

upy the same positions in Pt as in Pt�1; ex
ept thattheir internal order is di�erent. Hen
e, FLt;k = FLt�1;k and Lt(FLt;k) = Lt�1(FLt�1;k).Case 2. : y =2 F .Now y has weight �1. Sin
e x and y are 
ipped when we pass from Pt�1 to Pt, thepoint y is either at position FLt�1;k � 1 or at position FLt�1;k + 1 in Pt�1. The formerpossibility 
annot o

ur, for if y were at position FLt�1;k � 1 in Pt�1, then x and y wouldhave been 
ipped earlier, whi
h is impossible. Thus, we 
an assume that y is at positionFLt�1;k+1 in Pt�1. Sin
e y =2 F and x is the k-th leftmost element of F in Pt�1, we obtainthat x remains the k-th leftmost element of F in Pt and FLt;k = FLt�1;k + 1. Furthermore,we have Lt(FLt;k) = Lt�1(FLt�1;k) + w(y) = Lt�1(FLt�1;k)� 1.This proves the 
laim that Lt(FLt;k) is monotone non-in
reasing, 
ontinuous fun
tion oft. Sin
e L0(FL0;k) � 0 and L(2n2 )(FL(2n2 );k) < 0, it follows that there is a unique 0 < tk � �2n2 �su
h that Ltk�1(FLtk�1;k) � 0 and Ltk(FLtk;k) < 0. By Lemma 2.1, ltk is a balan
ed linethrough an element of F; whi
h has exa
tly k � 1 elements of F in the open half-planeto its left. Obviously, lt1 ; : : : ; ltn are distin
t balan
ed lines. Next we show that if lt is a73



balan
ed line, then t is one of t1; : : : ; tn. By Claim 1.2, lt passes through an element xwith weight +1 and an element y with weight �1. Suppose that x is the k-th leftmostelement of F in Pt�1 (1 � k � n). Then x is at position FLt�1;k in Pt�1. Sin
e w(y) = �1,we have x < y. Therefore, y is at position FLt�1;k+1 in Pt�1. Sin
e lt is a balan
ed line, itfollows that Lt�1(FLt�1;k) = 0. In Pt, x is still the k-th leftmost element of F , and we haveLt(FLt;k) = Lt�1(FLt�1;k) + w(y) = �1. Sin
e Ls(FLs;k) is monotone nonin
reasing fun
tionof s, we 
on
lude that t = tk.The rest of the paper is stru
tured as follows. In se
tion 3, we de�ne a pre�x set Fand a suÆx set H with some spe
ial properties, and set G := A n (F [ H). In se
tions4 and 5, we show that for every 1 � k � jF j, Lt(FLt;k) 
hanges (as a fun
tion of t) from0 to �1 at least on
e, and, for every 1 � k � jHj, Rt(HRt;k) 
hanges from 0 to �1 atleast on
e. Applying Lemmata 2.1 and 2.2, we will obtain that there exist jF j balan
edlines through the elements of F and jHj balan
ed lines through the elements of H. Inse
tion 6, we prove that every element of G = An (F [H), gives rise either to a balan
edline through an element of G or to a balan
ed line through an element of F [ H. Weshow that all of these lines are distin
t, so that the number of balan
ed lines is at leastjF j + jGj + jHj = n. In se
tion 7, we wrap up the proof of Theorem 1.3, while the lastse
tion 
ontains some 
on
luding remarks and generalizations.3 The de�nition of F ,G, and HIn this se
tion, we 
ontinue developing the ma
hinery needed for the proof of Theorem1.3.De�nition 3.1. Let S � f1; 2; : : : ; 2ng and 1 � j � d jSj2 e. We say that S has a barrierof order j if one of the following two 
onditions is satis�ed:1. every element in S has weight +1, and(a) either Lt(SLt;j) � 0 and Rt(SRt;j) � 0, for every 0 � t � �2n2 �,(b) or Lt(SLt;j) < 0 and Rt(SRt;j) < 0, for every 0 � t � �2n2 �;2. every element in S has weight �1 and(a) either Lt(SLt;j) � 0 and Rt(SRt;j) � 0, for every 0 � t � �2n2 �,(b) or Lt(SLt;j) > 0 and Rt(SRt;j) > 0, for every 0 � t � �2n2 �.We say that S has a barrier if it has a barrier of order j for some index j.Consider all (non-empty) sets of the formf1 � i � 2nju � i � v; w(i) = �g;74



where 1 � u < v � 2n and � 2 f+1;�1g. If at least one of these sets has a barrier, pi
kone for whi
h v � u is minimum and denote it by A0. If there is no su
h set, then letA0 = A, the set of all elements of weight +1.If A0 has a barrier, we may assume without loss of generality that 
ondition 1(a) or2(b) holds in De�nition 3.1 (for otherwise we multiply the weight of every element by�1). In other words, there exists 1 � j0 � d jA0j2 e su
h thatCase 1: every element in A0 has weight +1, and Lt((A0)Lt;j0) � 0 and Rt((A0)Rt;j0) � 0, forevery 0 � t � �2n2 �; orCase 2: every element in A0 has weight �1, and Lt((A0)Lt;j0) > 0 and Rt((A0)Rt;j0) > 0, forevery 0 � t � �2n2 �.In either 
ase, we indu
tively de�ne a de
reasing sequen
e A1 � A2 � : : : of subsets ofA as follows.For every 0 � t � �2n2 �, let 
t;0 := (A0)Lt;j0 and dt;0 := (A0)Rt;j0 (see De�nition 1.7). IfA�; 
0;�; d0;� have already been de�ned for all 0 � � < m, letAm = fa 2 Aj
0;m�1 < a < d0;m�1g:Assume that one of the following 
onditions is satis�ed for some 1 � j � d jAmj2 e.Case i: For every 0 � t � �2n2 � su
h that max0�i<m 
t;i � (Am)Lt;j � min0�i<m dt;i, we haveLt((Am)Lt;j) � 0, and for every 0 � t � �2n2 � su
h that max0�i<m 
t;i � (Am)Rt;j �min0�i<m dt;i, we have Rt((Am)Rt;j) � 0.Case ii: For every 0 � t � �2n2 � su
h that max0�i<m 
t;i � (Am)Lt;j � min0�i<m dt;i, we haveLt((Am)Lt;j) < 0, and for every 0 � t � �2n2 � su
h that max0�i<m 
t;i � (Am)Rt;j �min0�i<m dt;i, we have Rt((Am)Rt;j) < 0.Fix su
h a number j, set jm := j, and for every 0 � t � �2n2 �, let 
t;m := (Am)Lt;jm anddt;m := (Am)Rt;jm .If no su
h j exists or if Am = ;, stop. Let q be the index at whi
h we stopped. Thatis, the last set we de�ne is Aq. (If A0 does not have a barrier, then q = 0). Note that allelements of A1; A2; : : : ; Aq have weight +1, while the elements of A0 are all of weight +1or all of weight �1.If q > 0, letF := fa 2 Aja � 
0;q�1g;G := Aq; (1)H := A n (F [G) = fa 2 Aja � d0;q�1g:75



If q = 0, let F = H = ; and G = A0 = fa1; : : : ; ang.Clearly, F and H are pre�x and suÆx sets, respe
tively.4 Useful fa
ts about the sets AmThe following simple observation is 
ru
ial for our proposes.Claim 4.1 (
ontinuity). Let S � f1; 2; : : : ; 2ng and 1 � i � jSj. Then for every1 � t � �2n2 �, we have1. jSLt;i � SLt�1;ij � 1;2. jSRt;i � SRt�1;ij � 1.Corollary 4.2. Let 0 � m < q. For every 1 � t � �2n2 �, we have1. jmax0�i�m 
t;i �max0�i�m 
t�1;ij � 1;2. jmin0�i�m dt;i �min0�i�m dt�1;ij � 1.The aim of this se
tion is to prove the following 
laim, whose parts 1 and 2 roughlyexpress that in the de�nition of jm and Am at the end of the last se
tion, only Case i 
ano

ur. The proof is somewhat tedious but straightforward.Claim 4.3. Let 0 � m < q and 0 � t � �2n2 �.1. If max0�i<m 
t;i � 
t;m � min0�i<m dt;i, then Lt(
t;m) � 0;2. if max0�i<m 
t;i � dt;m � min0�i<m dt;i, then Rt(dt;m) � 0;3. max0�i�m 
t;i < min0�i�m dt;i.Proof: We prove the 
laim by indu
tion on m. Assume m = 0. Parts 1 and 2 followfrom the fa
t that A0 has a barrier and either 1(a) or 2(b) holds in De�nition 3.1. Part3 of the 
laim, stating that 
t;0 < dt;0, follows from the de�nitions of those numbers.Assume that all three parts of the 
laim have already been veri�ed for all 0 � i < m,and we want to prove it for m.
76



First we prove parts 1 and 2. If either 1 or 2 is not true, then in the de�nition of AmCase ii o

urs. That is, for every 0 � t � �2n2 �,max0�i<m 
t;i � 
t;m � min0�i<m dt;i =) Lt(
t;m) < 0 (2)max0�i<m 
t;i � dt;m � min0�i<m dt;i =) Rt(dt;m) < 0 (3)By de�nition, 
t;m < dt;m. Note that it 
annot happen thatmax0�i<m 
t;i � 
t;m < dt;m � min0�i<m dt;ifor every 0 � t � �2n2 �. Indeed, this would imply that Lt((Am)Lt;jm) = Lt(
t;m) < 0 andRt((Am)Rt;jm) = Lt(
t;m) < 0, for every 0 � t � �2n2 �. In other words, Am would have abarrier of order jm. This would 
ontradi
t the minimality of v � u in the de�nition ofA0, be
ause u � 
0;0 < a < d0;0 � v holds for every element a 2 AmTherefore, we may assume that there is a minimal t, 0 � t � �2n2 �, su
h that 
t+1;m <max0�i<m 
t+1;i. (The other 
ase when dt+1;m > min0�i<m dt+1;i for some t 
an be treatedsimilarly.)By Claim 4.1 and Corollary 4.2, it follows from the minimality of t that one of thefollowing two 
ases has to o

ur.Case a: 
t;m = max0�i<m 
t;i;Case b: 
t;m = max0�i<m 
t;i + 1.Let 0 � m0 < m be an index su
h that max0�i<m 
t;i = 
t;m0 . Clearly, we havemax0�i<m0 
t;i � max0�i<m 
t;i = 
t;m0 ; (4)and, by the indu
tion hypothesis,
t;m0 = max0�i<m 
t;i < min0�i<m dt;i � min0�i<m0 dt;i: (5)Combining (4) and (5), we obtainmax0�i<m0 
t;i � 
t;m0 � min0�i<m0 dt;i: (6)77



By the minimality of t,max0�i<m 
t;i � 
t;m � min0�i<m dt;i: (7)We dis
uss Cases a and b separately. In Case a, we have 
t;m = 
t;m0 . Using (6) andpart 1 of the indu
tion hypothesis for m0, we get Lt(
t;m) = Lt(
t;m0) � 0. In view of (7),this 
ontradi
ts (2).In Case b, we have 
t;m = 
t;m0 + 1. As before, we get Lt(
t;m0) � 0. Let x 2 Am0 bethe element of Pt at the position 
t;m0 = 
t;m � 1. If all elements of Am0 have weight +1,then w(x) = +1. Therefore,Lt(
t;m) = Lt(
t;m0) + w(x) = Lt(
t;m0) + 1 � 1:If m0 = 0 and all elements of A0 have weight �1, then, using the fa
t that A0 has abarrier, we �nd that Lt(
t;m0) = Lt(
t;0) > 0. Thus,Lt(
t;m) = Lt(
t;m0) + w(x) = Lt(
t;m0)� 1 � 0:Hen
e, in either 
ase Lt(
t;m) � 0, 
ontradi
ting (2). This 
ompletes the proof of parts 1and 2.Next we prove part 3. Assume for a 
ontradi
tion that there is a minimal t, 0 �t < �2n2 �, su
h that max1�i�m 
t+1;i � min1�i�m dt+1;i. By the indu
tion hypothesis,max0�i<m 
t+1;i < min0�i<m dt+1;i. Therefore, without loss of generality we may assumethat max0�i<m 
t+1;i < 
t+1;m. (The other 
ase when dt+1;m < min0�i<m dt+1;i for some t
an be treated similarly).By the minimality of t and by Corollary 4.2, again there are only two possibilities.Case a: max0�i�m 
t+1;i = min1�i�m dt+1;i,Case b: max0�i�m 
t+1;i = min1�i�m dt+1;i + 1.In Case a,max0�i<m 
t+1;i < 
t+1;m = min0�i�m dt+1;i = min0�i<m dt+1;i; (8)where the last equality follows from the fa
t that 
t+1;m < dt+1;m.Let m0 < m be su
h that min0�i<m dt+1;i = dt+1;m0 . Then we havedt+1;m0 = min0�i<m dt+1;i � min0�i<m0 dt+1;i;78



and, by indu
tion hypothesis,max0�i<m0 
t+1;i � max0�i<m 
t+1;i < min0�i<m dt+1;i = dt+1;m0:Combining the last two inequalities, we obtainmax0�i<m0 
t+1;i � dt+1;m0 � min0�i<m0 dt+1;i:This, together with part 2 of the 
laim for m0, implies that Rt+1(dt+1;m0) � 0. Let x bethe element in Pt+1 at the position dt+1;m0 = 
t+1;m. By the de�nition of 
t+1;m; x belongsto Am, and therefore w(x) = +1. ThenLt+1(
t+1;m) = Lt+1(dt+1;m0) = �(w(x) +Rt+1(dt+1;m0)) = �1�Rt+1(dt+1;m0) � �1where the se
ond equality follows from the fa
t that the sum of all weights is 0. This,together with (8), 
ontradi
ts part 1 of the 
laim.In Case b, it follows from the minimality of t and Corollary 4.2 thatmax0�i�m 
t;i = min0�i�m dt;i � 1: (9)Sin
e 
t+1;m < dt+1;m, we have
t+1;m = max0�i�m 
t+1;i = min1�i�m dt+1;i + 1 = min1�i<m dt+1;i + 1;and, by the indu
tion hypothesis,max0�i<m 
t+1;i + 1 < min0�i<m dt+1;i + 1 = 
t+1;mTherefore, max0�i<m 
t+1;i+2 � 
t+1;m and, by Claim 4.1, we obtain max0�i<m 
t;i � 
t;m.This, together with (9), implies that
t;m = max0�i�m 
t;i = min0�i�m dt;i � 1 = dt;m0 � 1; (10)where m0 � m is su
h that min0�i�m dt;i = dt;m0. Then we havemax0�i<m0 
t;i � max0�i�m 
t;i < dt;m0 = min0�i�m dt;i � min0�i<m0 dt;i:79



Here the se
ond inequality follows from (10). So, by part 1 of the 
laim for m0,Rt(dt;m0) � 0:Let x 2 Am0 be the element in Pt at the position dt;m0. In view of (10),Rt(
t;m) = Rt(dt;m0) + w(x):If all elements of Am0 have weight +1, then w(x) = +1, and thusRt(
t;m) = Rt(dt;m0) + 1 � 1:If m0 = 0 and all elements of A0 have weight �1, thenRt(
t;m) = Rt(dt;0)� 1 � 0;be
ause Rt(dt;0) = Rt((A0)Rt;j0) > 0, by the de�nition of A0. In either 
ase, Rt(
t;m) � 0.Let y 2 Am be the element in Pt at the position 
t;m. Then w(y) = +1, thereforeLt(
t;m) = �(w(y) +Rt(
t;m)) = �(1 +Rt(
t;m)) < 0:This, 
ombined with (10), 
ontradi
ts part 1 of the 
laim, 
ompleting the proof.Notation 4.4. For every 0 � t � �2n2 �, let Ct = max0�i<q 
t;i and Dt = min0�i<q dt;i.Corollary 4.5. For every 0 � t � �2n2 �, we have1. Lt(Ct) � 0 and Rt(Dt) � 0,2. Lt(Ct + 1) � 0 and Rt(Dt � 1) � 0.Proof: Fix 0 � t � �2n2 �. We prove only the �rst assertion of part 1; the proof of these
ond assertion is very similar. Choose 0 � m < q so that Ct = 
t;m. Then we havemax0�i<m 
t;i � max0�i<q 
t;i = 
t;m = max0�i<q 
t;i < min0�i<q dt;i � min0�i<m dt;i;where the se
ond inequality follows from part 3 of Claim 4.3. Thus, part 1 of Claim 4.3immediately implies that Lt(Ct) = Lt(
t;m) � 0:Next we prove the �rst assertion of part 2. Again, 
hoose 0 � m < q so that Ct = 
t;m.By part 1, Lt(
t;m) � 0. Let x 2 Am be the element in Pt at the position 
t;m. If m 6= 0or m = 0 and all elements of A0 have weight +1, then w(x) = +1. Therefore,Lt(Ct + 1) = Lt(
t;m + 1) = Lt(
t;m) + w(x) = Lt(
t;m) + 1 � 1:If m = 0 and all elements of A0 have weight �1, then w(x) = �1. Re
all that, a

ordingto the de�nition of A0 and 
t;0, we have Lt(
t;0) > 0. Thus,Lt(Ct + 1) = Lt(
t;0 + 1) = Lt(
t;0) + w(x) = Lt(
t;0)� 1 � 0;as required. The se
ond assertion of part 2 
an be veri�ed analogously.80



5 Balan
ed lines through the points of F and HUsing Notation 4.4, we 
an rewrite the de�nition of F ,G, and H (at the end of se
tion3) as follows.F = fi 2 Aji � C0g;G = Aq = A n (F [H); (11)H = fi 2 Aji � D0g:In this se
tion we show that for every 1 � k � jF j, as t goes from 0 to �2n2 �, Lt(FLt;k)
hanges from 0 to �1 at least on
e. Similarly, for every 1 � k � jHj, Rt(HRt;k) 
hangesfrom 0 to �1 at least on
e. Thus, Lemmata 2.1 and 2.2 imply that the number ofbalan
ed lines passing through some element of F (and H) is at least jF j (at least jHj,respe
tively).De�nition 5.1. For any 1 � k � jF j; let t(F; k) denote the minimal t su
h that FLt;k � Ct,and let T (F; k) denote the maximal t su
h that FLt;k � Dt.Similarly, for any 1 � k � jHj, let t(H; k) (and T (H; k)) denote the minimal t su
hthat HRt;k � Dt (the maximal t su
h that HRt;k � Ct, respe
tively).First we show that the above de�nition is 
orre
t.Claim 5.2. The numbers t(F; k); T (F; k); t(H; k); T (H; k) exist.Proof: We prove only the existen
e of t(F; k) and T (F; k). By (11), we have FL0;k � C0,for every 1 � k � jF j. It follows from part 3 of Claim 4.3, that Ct < Dt, for every0 � t � �2n2 �. Therefore, it suÆ
es to show that FL(2n2 );k � D(2n2 ).Assume 0 � m < q, where q is the same as in (1). Denote by x the element at theposition 
0;m = (Am)L0;jm in P0. Then x is the jm'th leftmost element of Am in P0. P(2n2 )is a reversed 
opy of P0, i.e., P(2n2 ) = (2n; 2n � 1; : : : ; 2; 1). Therefore, in P(2n2 ), x is thejm'th rightmost element of Am. In other words, x is at position d(2n2 );m = (Am)R(2n2 );jm inP(2n2 ).For every 0 � m < q, let xm denote the element at position 
0;m in P0. By thede�nition of the sets A0; A1; : : : ; Aq�1, we have x0 < x1 < : : : < xq�1. Thus, for every0 � m < q, xm is at position d(2n2 );m in P(2n2 ). Sin
e in P(2n2 ) the numbers x0; : : : ; xq�1 arein reversed order, we may 
on
lude that d(2n2 );q�1 < d(2n2 );q�2 < : : : < d(2n2 );0.Let y 2 F . By the de�nition of F , we have y � C0 = 
0;q�1. Therefore, y � xq�1and hen
e y is at a position greater or equal to the position of xq�1 in P(2n2 ), whi
h isd(2n2 );q�1 = D(2n2 ). In parti
ular, it follows that FL(2n2 );k � D(2n2 ) for every 1 � k � jF j.81



De�nition 5.3. For any 1 � k � jF j, let �(F; k) denote the number of di�erent values oft for whi
h t(F; k) < t � T (F; k), and whi
h satisfy Lt�1(FLt�1;k) = �1 and Lt(FLt;k) = 0.Similarly, for any 1 � k � jHj, let �(H; k) denote the number of di�erent values of tfor whi
h t(F; k) < t � T (F; k), and whi
h satisfy Rt�1(HRt�1;k) = �1 and Rt(HRt;k) = 0.Lemma 5.4. For any 1 � k � jF j, there are at least 1+ �(F; k) balan
ed lines l meetingthe following two requirements.1. l passes through a point of F ,2. there are exa
tly k � 1 points of F in the open half-plane whi
h is to the left of l.Proof: A

ording to Lemma 2.1 (and using the 
ontinuity of Lt(FLt;k), as a fun
tion oft), it is enough to show that Lt(F;k)(FLt(F;k);k) � 0 and LT (F;k)(FLT (F;k);k) < 0.Let t0 = t(F; k). By the de�nition of t(F; k) we have, FLt0;k � Ct0 . If t0 = 0, thenFLt0;k = Ct0 (for FL0;k � C0). If t0 > 0 then, by the minimality of t(F; k), FLt0�1;k < Ct0�1.Therefore, by Corollary 4.2, either FLt0;k = Ct0 or FLt0;k = Ct0 + 1.We 
on
lude that in both 
ases either FLt0;k = Ct0 or FLt0;k = Ct0 + 1. In either 
ase,we use Corollary 4.5, to argue that Lt0(FLt0;k) � 0.Similarly, let t1 = T (F; k). Then, by the maximality of T (F; k), either FLt1 ;k = Dt1 orFLt1;k = Dt1 � 1. In either 
ase, Corollary 4.5 implies Rt1(FLt1;k) � 0. Let x be the elementin Pt1 at the position FLt1 ;k. Then x 2 F and hen
e w(x) = 1. Therefore,Lt1(FLt1;k) = �(w(x) +Rt1(FLt1;k)) = �1�Rt1(FLt1;k) < 0:Similarly, we haveLemma 5.5. For any 1 � k � jHj, there are at least 1+�(H; k) balan
ed lines l meetingthe following two requirements.1. l passes through a point of H,2. there are exa
tly k� 1 points of H in the open half-plane whi
h is to the right of l.6 The 
ontribution of GIn this se
tion, we estimate from below the 
ontribution of G to the number of balan
edlines. We prove (Lemma 6.2) that there are at least jGj di�erent values of t, for whi
heither Lt(GLt;k) or Rt(GRt;k) 
hanges from �1 to 0 or vi
e versa (for some k, as we go fromt � 1 to t). Then we show (Claim 6.4) that for ea
h su
h t, either lt is a balan
ed linethrough an element of G orP1�k�jF j �(F; k)+P1�k�jHj �(H; k) in
reased by 1. However,in the latter 
ase we �nd a new balan
ed line through an element of F [H.We need an auxiliary lemma. 82



Lemma 6.1. Let 1 � k � d jGj2 e and t0 < t1. Suppose that Ct0 � GLt0;k � Dt0 andCt1 � GLt1;k � Dt1 .(a) If Lt0(GLt0;k) � 0 and Lt1(GLt1;k) < 0, then there is an integer t satisfyingt0 < t � t1; Ct�1 � GLt�1;k � Dt�1; andCt � GLt;k � Dt (12)su
h that Lt�1(GLt�1;k) = 0 and Lt(GLt;k) = �1;(b) if Lt0(GLt0;k) < 0 and Lt1(GLt1;k) � 0, then there is an integer t satisfying 12 su
hthat Lt�1(GLt�1;k) = �1 and Lt(GLt;k) = 0;(
) if Rt0(GRt0;k) � 0 and Rt1(GRt1;k) < 0, then there is an integer t satisfying 12 su
hthat Rt�1(GRt�1;k) = 0 and Rt(GRt;k) = �1;(d) if Rt0(GRt0;k) < 0 and Rt1(GRt1;k) � 0, then there is an integer t satisfying 12 su
hthat Rt�1(GRt�1;k) = �1 and Rt(GRt;k) = 0.Proof: By symmetry, it is enough to dis
uss the 
ase Lt0(GLt0;k) � 0 and Lt1(GLt1;k) < 0.(The other 
ases 
an be treated similarly.)Let t be the minimum integer in (t0; t1℄, for whi
h Lt(GLt;i) < 0 and Ct � GLt;k � Dt.We show that t meets the requirements of the lemma.If Ct�1 � GLt�1;k � Dt�1, then Lt�1(GLt�1;k) = 0, by the minimality of t, and we aredone.Otherwise, we distinguish two 
ases.Case 1: GLt�1;k < Ct�1;Case 2: GLt�1;k > Dt�1.Sin
e Ct � GLt;k � Dt, it follows from Corollary 4.2 that in Case 1 either GLt;k = Ct orGLt;k = Ct + 1; and in Case 2 either GLt;k = Dt or GLt;k = Dt � 1.Case 1 is impossible, be
ause Lt(GLt;k) < 0, while, by Corollary 4.5, Lt(Ct) � 0 andLt(Ct + 1) � 0. Contradi
tion.In Case 2, let t0 be the maximum integer in [t0; t � 1) su
h that GLt0;k � Dt0 . Bythe maximality of t0 and by Corollary 4.2, GLt0;k is either Dt0 or Dt0 � 1. In either 
ase,Corollary 4.5 implies that Rt0(GLt0;i) � 0. Therefore, denoting by x the element in Pt0 atposition GLt0;k, we haveLt0(GLt0;k) = �(w(x) +Rt0(GLt0;k)) = �(1 +Rt0(GLt0;k)) < 0:Moreover, we have Ct0 � GLt0;k � Dt0 . Thus, t0 
ontradi
ts the minimality of t.(Observe that t0 6= t0, be
ause Lt0(GLt0;k) < 0; while Lt0(GLt0;k) � 0.)83



Lemma 6.2. Let 1 � k � b jGj2 
. Then there exist 0 < t1k; t2k � �2n2 �, t1k 6= t2k, su
h thatfor t 2 ft1k; t2kg, pre
isely one of the following two 
onditions is satis�ed.1. fLt�1(GLt�1;k); Lt(GLt;k)g = f0;�1g, Ct�1 � GLt�1;k � Dt�1, and Ct � GLt;k � Dt;2. fRt�1(GRt�1;k); Rt(GRt;k)g = f0;�1g, Ct�1 � GRt�1;k � Dt�1, and Ct � GRt;k � Dt.Furthermore, if jGj is odd and k = jGj+12 , then there exists at least one t = tk,0 � t � �2n2 �, satisfying 
ondition 1 or 2.All numbers t1k; t2k; tk having the above properties are di�erent for di�erent values ofk.Proof: Suppose �rst that L0(GL0;k) � 0 and R0(GR0;k) < 0. Sin
e P(2n2 ) is a reversed 
opyof P0, we have that L(2n2 )(GL(2n2 );k) = R0(GR0;k) < 0. By the de�nition of G, for every1 � j � jGj, C0 � GL0;j � D0 so that C(2n2 ) � GL(2n2 );j � D(2n2 ). Therefore, Lemma 6.1implies that there exists t1k for whi
h 
ondition 1 of Lemma 6.2 holds.To prove the existen
e of t2k, note that R(2n2 )(GR(2n2 );k) = L0(GL0;k) � 0. Now Lemma6.1 implies that there exists t2k satisfying 
ondition 2 of Lemma 6.2.Next, suppose that L0(GL0;k) � 0 and R0(GR0;k) � 0.Then L(2n2 )(GL(2n2 );k) = R0(GR0;k) � 0 and R(2n2 )(GR(2n2 );k) = L0(GL0;k) � 0. By the
onstru
tion of G, at least one of the following two 
onditions is satis�ed:(i) there exist t0; t1 su
h that Lt0(GLt0;k) � 0, Lt1(GLt1;k) < 0, Ct0 � GLt0;k � Dt0 , andCt1 � GLt1;k � Dt1 ;(ii) there exist t0; t1 su
h that Rt0(GRt0;k) � 0, Rt1(GRt1;k) < 0, Ct0 � GRt0;k � Dt0 , andCt1 � GRt1;k � Dt1 .If (i) holds, then part (a) and (b) of Lemma 6.1 imply that there exist t1k and t2k, 0 <t1k � t1 < t2k � �2n2 �, for whi
h 
ondition 1 of Lemma 6.2 is satis�ed.If (ii) holds then, similarly, 
ondition 2 of Lemma 6.2 
an be derived from parts (
)and (d) of Lemma 6.1.The remaining 
ases 
an be settled in the same way. Note that the above argumentalso applies when k = jGj+12 , but in this 
ase t1k and t2k may 
oin
ide.We prove the last statement of Lemma 6.2 by 
ontradi
tion. Suppose, e.g., thatthere are two integers 1 � k 6= k0 � d jGj2 e su
h that tk 2 ft1k; t2kg; tk0 2 ft1k0; t2k0g, andtk = tk0 = t. If t satis�es 
ondition 1 of the lemma, then Lt�1(GLt�1;k) 6= Lt(GLt;k). In this84




ase, lt passes through a unique element of G. Indeed, if lt passed through two elements ofG or no element ofG, we would have GLt�1;k = GLt;k and hen
e also Lt�1(GLt�1;k) = Lt(GLt;k).Moreover, this unique element of G is at position GLt�1;k in Pt�1.Similarly, if 
ondition 2 is satis�ed, then lt passes through a unique element of G,whi
h is at position GRt�1;k in Pt�1. Therefore, if t = tk = tk0, we have fGLt�1;k; GRt�1;kg \fGLt�1;k0; GRt�1;k0g 6= ;, whi
h is a 
ontradi
tion, as 1 � k 6= k0 � d jGj2 e.Notation 6.3. For any S � f1; 2; : : : ; 2ng; let bal(S) denote the number of balan
edlines passing through at least one point of S.Claim 6.4. jGj �P1�k�jF j �(F; k) +P1�k�jHj �(H; k) + bal(G)Proof: Let 1 � k � d jGj2 e, and let t be one of the values t1k; t2k; whose existen
e isguaranteed by Lemma 6.2. (Note that in 
ase k = jGj+12 there is only one su
h value.)Then Ct�1 � GLt�1;k � Dt�1, and Ct � GLt;k � Dt. There are four possibilities:1. (a) Lt�1(GLt�1;k) = 0 and Lt(GLt;k) = �1,(b) Lt�1(GLt�1;k) = �1 and Lt(GLt;k) = 0,2. (a) Rt�1(GRt�1;k) = 0 and Rt(GRt;k) = �1,(b) Rt�1(GRt�1;k) = �1 and Rt(GRt;k) = 0.For simpli
ity, we 
onsider only 
ase 1(a). Let x denote the element at position GLt�1;kin Pt�1. Sin
e x 2 G, we have w(x) = +1. Pt�1 and Pt di�er in two 
onse
utive pla
es;one of them is o

upied by x. Let y denote the element at the other pla
e. Obviously, ltpasses through x and y. We distinguish two 
ases.Case 1: w(y) = �1.Clearly, y =2 G, so x is at position GLt;k in Pt. Sin
e Lt(GLt;k) < Lt�1(GLt�1;k), it followsthat y > x. That is, Lt(GLt;k) = Lt�1(GLt�1;k)+w(y). Consequently, the sum of the weightsof the points of V in the open half-plane to the left of lt, is 0. Sin
e w(x) + w(y) = 0, ltmust be a balan
ed line.Case 2: w(y) = +1.Now y =2 G, for otherwise Lt(GLt;k) = Lt�1(GLt�1;k).Using the fa
t that Lt(GLt;k) < Lt�1(GLt�1;k), we obtain that y < x. That is Lt(GLt;k) =Lt�1(GLt�1;k)�w(y). Sin
e y =2 G and y < x, we have y 2 F . Let 1 � s � jF j denote theinteger for whi
h y is the s-th leftmost element of F in Pt�1 and hen
e also in Pt. Nowit follows that Lt�1(FLt�1;s) = �1 and Lt(FLt;s) = 0. We show that t(F; s) < t � T (F; s),whi
h implies that when x and y are swapped, �(F; s) in
reases by 1.85



To see that t(F; s) < t, it is enough to prove that Ct�1 � FLt�1;s. Sin
e Lt(GLt;k) = �1,using Corrolary 4.5 and the fa
t that Ct � GLt;k we have Ct+2 � GLt;k. Now GLt;k = FLt;s�1,so that Ct + 3 � FLt;s. It follows from Claim 4.1 and Corrolary 4.2 that Ct�1 < FLt�1;s.To see that t � T (F; s), it is enough to prove that FLt;s � Dt. Now Rt�1(GLt�1;k) =�(Lt�1(GLt�1;k) + w(x)) < 0. Sin
e GLt�1;k � Dt�1, it follows from Corrolary 4.5 thatGLt�1;k � Dt�1 � 2. We have FLt�1;s = GLt�1;k � 1, so that FLt�1;s � Dt�1 � 3. It followsfrom Claim 4.1 and Corrolary 4.2 that FLt;s � Dt � 1.Summarizing, we have shown that for every value of t, whose existen
e is guaran-teed by Lemma 6.2, either lt is a distin
t balan
ed line through an element of G, or t
ontributes 1 to the sum P1�k�jF j �(F; k) +P1�k�jHj �(H; k).7 Proof of the Theorem 1.3Now we are in a position to 
omplete the proof of Theorem 1.3. Sin
e F [G [H is theset of all elements of weight +1, by Claim 1.2 we have that the number of balan
ed linesis equal to bal(F ) + bal(H) + bal(G). By Lemmata 5.4 and 5.5, we havebal(F ) � X1�k�jF j(1 + �(F; k)); bal(H) � X1�k�jHj(1 + �(H; k)):Therefore, in view of Claim 6.4, the number of balan
ed lines isbal(F ) + bal(H) + bal(G) � X1�k�jF j(1 + �(F; k)) + X1�k�jHj(1 + �(H; k)) + bal(G)= jF j+ jHj+0� X1�k�jF j �(F; k) + X1�k�jHj �(H; k) + bal(G)1A� jF j+ jHj+ jGj = n:8 Con
luding remarksTheorem 1.3 does not remain true without assuming that the points are in general posi-tion. It is not hard to 
onstru
t sets of n points of weight +1 and n points of weight �1whi
h determine no balan
ed line.Theorem 1.3 
an be rephrased in the following dual form. Consider n lines of weight+1 and n lines of weight �1 in general position in the plane, i.e., no three of them passthrough the same point, no two are parallel, and none of them is verti
al (parallel to they-axis). Then they determine at least n interse
tion points p with the property that the86
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Figure 2: A 2-
olored point set with a unique balan
ed halving linesum of the weights of all lines above p, as well as the sum of the weights of all lines belowp, is equal to zero. This statement 
an also be formulated for x-monotone pseudo-linesinstead of lines (a pseudo-line is 
alled x-monotone if every verti
al line interse
ts it inpre
isely one point). This version remains valid, be
ause as we sweep the plane by averti
al line from left to right, the order in whi
h it meets the pseudo-lines determines a
ip array, and our proof applies.Let V be a set of points in general position in the plane, having an even number ofelements. A line l 
onne
ting two points of V is 
alled a halving line, if it 
uts V intotwo equal halves, i.e., if both open half-planes bounded by l 
ontain pre
isely jV j=2� 1elements of V .The following simple fa
t is an easy 
onsequen
e of the Ham-sandwi
h Theorem (fora similar argument, see [AA89℄).Claim 8.1. Let V 
onsist of n points of weight +1 and n points of weight �1 in generalposition in the plane. If n is odd, then V permits a balan
ed halving line l.Proof: Repla
e ea
h point v 2 V by a dis
 of area 1=N 
entered at v, where N is asuÆ
iently large integer. Let D+ and D� denote the union of all dis
s whi
h 
orrespondto the elements of V with positive and negative weights, respe
tively. By the Ham-sandwi
h Theorem, there is a straight line l(N) su
h that the area of the interse
tionof D+ with any half-plane bounded by l(N) is n=(2N), and the same is true for D�.Choose an in�nite sequen
e N(1) < N(2) < : : : su
h that the 
orresponding lines l(Ni)
onverge to a straight line l, as i tends to in�nity. Clearly, l must 
onne
t a point ofpositive weight weight with a point of negative weight, and it meets the requirements inthe 
laim.It is not hard to 
ome up with a point set V satisfying the 
onditions in Lemma 8.1,whi
h permits only one balan
ed halving line. (See Figure 2.)The above argument easily generalizes to any d-dimensional set V in general position,whose elements are 
olored with d 
olors. However, the analogue of Theorem 1.3 doesnot hold in 3 and higher dimensions. 87



De�nition 8.2. A set of points in d-spa
e is said to be in general position, if no d + 1of them lie on a hyperplane.Let U = U1 [ : : :[ Ud be a set of dn points in general position in d-spa
e, where ea
hUi 
onsists of n points and is 
alled a 
olor 
lass.A hyperplane h determined by (d elements of) V is 
alled balan
ed if ea
h openhalf-spa
e bounded by h 
ontains the same number of elements from ea
h 
olor 
lass.Obviously, all points a balan
ed hyperplane are of di�erent 
olors. By straightforwardgeneralization of the proof of Claim 8.1, we also obtain that if n is odd, then U =U1 [ : : : [ Ud always permits at least one balan
ed halving hyperplane.Claim 8.3. For every d � 3, there exists a set U of dn points in general position ind-spa
e, whi
h 
onsists of d 
olor 
lasses of size n and satis�es the following 
ondition:(i) if n is even, then U does not permit a balan
ed hyperplane;(ii) if n is odd, then U permits pre
isely one balan
ed hyperplane.Proof: We present the 
onstru
tion only for d = 3; the other 
onstru
tions are verysimilar.Suppose �rst that n is even. Let fa; b; 
; dg be the vertex set of a regular tetrahedron
entered at o. Repla
e a; b; 
; d and o by �ve point sets, A;B;C;D; and O, respe
tively.Suppose that ea
h of these sets is equally spa
ed along a line parallel to od, with asuÆ
iently small distan
e " > 0, and let jAj = jBj = jCj = jDj = n=2; and jOj = n.Finally, slightly perturb the points so that A[B [C [D[O will be in general position.Let U1 := A [ B; U2 := C [ D; and U3 := O. Suppose, in order to obtain a
ontradi
tion, that U := U1 [ U2 [ U3 permits a balan
ed hyperplane h. Clearly, h mustpass through three points of di�erent 
olors, say, u 2 A; v 2 C; and w 2 O. Now B andD are on di�erent sides of h, whi
h implies that both open half-spa
es bounded by hmust 
ontain at least n=2 points of ea
h 
olor. Counting the points u; v; and w belongingto h, ea
h 
olor 
lass has at least n+ 1 elements, a 
ontradi
tion.If n is odd, then the 
onstru
tion is the same, ex
ept that jAj = jCj = (n+ 1)=2 andjBj = jDj = (n� 1)=2: Now a balan
ed hyperplane h must pass through one element inea
h of the sets A;C; and O, say, u; v; and w; resp. Moreover, sin
e there are at least(n� 1)=2 elements of U2 in the open half-spa
e opposite to D, v must be the last pointof C in the dire
tion od. Similarly, u is the last point of A in the same dire
tion, and wis also uniquely determined.Referen
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