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2. Is it true that the minimum number of di�erent diretions assumed by theonneting lines of n � 6 non-oplanar points in 3-spae is 2n � 3 if n is evenand 2n� 2 if n is odd?Twelve years later, the �rst question was answered in the aÆrmative by Ungar[18℄. His proof is a real gem, a brilliant appliation of the method of allowable se-quenes invented by Goodman and Pollak [9℄, [10℄. Moreover, it solves the problemin an elegant ombinatorial setting, for \pseudolines", as was suggested independentlyby Goodman and Pollak and by Cordovil [6℄. For even n, Ungar's theorem gener-alizes Erd}os's above mentioned result. However, in ontrast to Erd}os's result, herethere is an overwhelming diversity of extremal on�gurations, for whih equality isattained. Four in�nite families and more than one hundred sporadi on�gurationswere atalogued by Jamison and Hill [14℄ (see also [13℄ for an exellent survey).Progress on the seond question of Sott has been muh slower. As Jamison [13℄notied, unless we impose some further restrition on the point set, for odd n, thenumber of diretions determined by n points in 3-spae an be as small as 2n � 5.Indeed, equality is attained, e.g., for the n-element set obtained from the vertexset of a regular (n � 3)-gon Pn�3 (or from any other entrally symmetri extremalon�guration for the planar problem) by adding its enter  and two other pointswhose midpoint is  and whose onneting line is orthogonal to the plane of Pn�3.Blokhuis and Seress [3℄ introdued a natural ondition exluding the above on-�gurations: they assumed that no three points are ollinear. Under this assumption,they proved that every non-oplanar set of n points in 3-spae determines at least1:75n� 2 di�erent diretions.The aim of the present paper is to answer Sott's seond question in the aÆrma-tive, using the same assumption as Blokhuis and Seress.Theorem 1.1. Every set of n � 6 points in R3 , not all of whih are on a plane andno three are on a line, determine at least n + 2dn=2e � 3 di�erent diretions. Thisbound is sharp.Removing the enter  from the on�guration desribed above that determines2n� 5 diretions, we obtain a set of even size n0 = n� 1 with 2n0 � 3 diretions andno three ollinear points (see Figure 1(a)). If the number of points is even, then thisonstrution provides the only known in�nite family for whih Theorem 1.1 is sharp.In addition, there are four known sporadi extremal on�gurations, eah of whih isa subset of the 14-element set depited in Figure 1(b).Aording to a beautiful result of Motzkin [15℄, Rabin, and Chakerian [5℄ (seealso [1℄), any set of n non-ollinear points in the plane, olored with two olors redand green, determines a monohromati line. Motzkin and Gr�unbaum [11℄ initiatedthe investigation of biased olorings, i.e., olorings without monohromati red lines.Their motivation was to justify the intuitive feeling that if there are many red pointsin suh a oloring and not all of them are ollinear, then the number of green pointsmust also be rather large. Denoting the sets of red and green points by R and G,2
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Figure 1: Two examples of sets with an even number n of points, not all on a planeand no three oplanar, that determine 2n� 3 di�erent diretions.respetively, it is a hallenging unsolved question to deide whether the \surplus"jRj� jGj of the oloring an be arbitrarily large. We do not know any example wherethis quantity exeeds 6 [12℄.The problem of biased olorings was redisovered by Erd}os and Purdy [8℄, whoformulated it as follows: What is the smallest number m(n) of points neessary torepresent (i.e., stab) all lines spanned by n non-ollinear points in the plane, if thegenerating points annot be used. An 
(n) lower bound follows from the \weak Diraonjeture" proved by Szemer�edi and Trotter [17℄ and Bek [2℄, aording to whihthere is a point that lies on 
(n) di�erent onneting lines. Eah of these onnetinglines has to be represented by a di�erent point.In Setion 2, we redue Theorem 1.1 to a statement (Theorem 2.2) showing thatunder some further restritions the surplus is indeed bounded. More preisely, if thereis no onneting line whose leftmost and rightmost points are both red, then we havejGj � 2bjRj=2, so in partiular jRj � jGj � 1.Another way of rephrasing Ungar's theorem is that from all losed segments whoseendpoints belong to a non-ollinear set of n points in the plane, one an always seletat least 2bn=2 suh that no two of them are parallel. Unless we expliitly state itotherwise, every segment used in this paper is assumed to be losed. Our proof ofTheorem 2.2 is based on a far-reahing generalization of Ungar's result. To formulatethis statement, we need to relax the ondition of two segments being parallel.3
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Figure 2: Avoiding and non-avoiding segments.De�nition 1.2. Two segments belonging to distint lines are alled avoiding if oneof the following two onditions is satis�ed (see Figure 2):(i) they are parallel, or(ii) the intersetion of their supporting lines does not belong to any of the segments.An alternative de�nition is that two segments are avoiding if and only if they aredisjoint and their onvex hull is a quadrilateral.The main result of this paper, whih implies Theorem 1.1 and Theorem 2.2 (statedin the next setion), is the following strengthening of Ungar's theorem, whih is ofindependent interest.Theorem 1.3. >From all losed segments determined by a set of n non-ollinearpoints in the plane, one an always selet at least 2bn=2 pairwise non-avoiding ones,lying on distint lines.Theorem 1.3 is established in Setions 3 and 4.This paper leaves open the problem of extending Theorem 1.1 to the general ase,where the given point set may ontain triples of ollinear points. We are in the proessof studying this extension in a forthoming ompanion paper.2 Redution of Theorem 1.1 to a Planar ProblemLet P be a set of n points in R3 suh that not all of them lie in a ommon planeand no three of them are ollinear. Let p0 be an extreme point of P , i.e., a vertex of4
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p0Figure 3: Proving the existene of a green point on `, in extreme position.the onvex hull of P . Consider a supporting plane to P at p0, and translate it to theside that ontains P . Let � denote the resulting plane. Projet from p0 all points ofP n fp0g onto �. We obtain a set R of n � 1 distint points in �, not all on a line,and we will refer to the elements of R as red points. Eah red point orresponds to adiretion determined by p0 and some other point of P .For eah pair of elements p; p0 2 P n fp0g, take a line parallel to pp0 that passesthrough p0. Color with green the intersetion point of this line with �, unless it hasalready been olored red. The set of all green points is denoted by G. By de�nition,we have R \G = ;.We need the following simple property of the sets R and G, whih implies thatalong every line passing through at least two red points either the leftmost or therightmost point belonging to R [G is green.Lemma 2.1. Every line onneting two red points r; r0 2 R passes through at leastone green point g 2 G that does not belong to the (losed) segment rr0.Proof: Let ` be a line in � passing through at least two red points r; r0 2 R. Assumewithout loss of generality that r and r0 are the leftmost and rightmost red pointsalong `. Let p and p0 denote those elements of P whose projetions to � are r andr0, respetively. Observe that in the plane indued by p0 and `, the diretion of pp0does not belong to the onvex one enlosed by the rays p0p and p0p0, so the linethrough p0 parallel to pp0 will ross ` in a green point g meeting the requirements.See Figure 3. 2To establish Theorem 1.1, it is suÆient to verify the following result.Theorem 2.2. Let R be a set of n red points in the plane, not all ollinear, and letG be a set of m green points suh that R\G = ; and every line ` onneting at leasttwo red points in R passes through a green point g 2 G that does not belong to anysegment rr0, for r; r0 2 R \ `.Then we have m � 2bn=2.Indeed, to prove Theorem 1.1 it is enough to notie that in our setting we have5



jRj = n� 1 and that the number of di�erent diretions determined by P is equal tojRj+ jGj � n� 1 + 2�n� 12 � = n+ 2 ln2m� 3:Thus, applying Theorem 2.2, Theorem 1.1 immediately follows.It is interesting to note that Theorem 2.2 also implies Ungar's above-mentionedtheorem. To see this, regard the elements of our given planar point set as red, andthe diretions determined by them as green points on the line at in�nity, and applyTheorem 2.2. (If we wish, we an perform a projetive transformation and avoid theuse of points at in�nity.)It remains to prove Theorem 2.2. However, as mentioned in the introdution,this result an be easily dedued from Theorem 1.3, whih is a further extension ofUngar's theorem:Proof of Theorem 2.2 (using Theorem 1.3): Applying Theorem 1.3 to the set R,we obtain 2bn=2 segments with red endpoints that lie in distint lines and no pairof them are avoiding. By the ondition in Theorem 2.2, the ontinuation of eahof these segments passes through a green point. Assign suh a green point to eahsegment. Observe that these points are all distint. Indeed, if we an assign the samegreen point to two di�erent segments, then they must be avoiding, by de�nition. Thisompletes the proof of Theorem 2.2 and hene of Theorem 1.1. 23 Juntions and Stations {Proof of Theorem 1.3The aim of this and the next setion is to establish an equivalent dual version ofTheorem 1.3. Fix an (x; y)-oordinate system in the plane. We apply a standardduality transform that maps a point p = (p1; p2) to the line p� with equation y +p1x+p2 = 0. Vie versa, a non-vertial line l with equation y+ l1x+ l2 = 0 is mappedto the point l� = (l1; l2). Consequently, any two parallel lines are mapped into pointshaving the same x-oordinate. It is often onvenient to imagine that the dual piturelies in another, so-alled dual, plane, di�erent from the original one, whih is referredto as the primal plane.The above mapping is inidene and order preserving, in the sense that p liesabove, on, or below ` if and only `� lies above, on, or below p�, respetively. Thepoints of a segment e = ab in the primal plane are mapped to the set of all lines inthe losed double wedge e�, whih is bounded by a� and b� and does not ontain thevertial diretion. All of these lines pass through the point q = a�\b�, whih is alledthe apex of the double wedge e�. All double wedges used in this paper are assumedto be losed, and they never ontain the vertial diretion.De�nition 3.1. We all two double wedges avoiding if their apies are distint andthe apex of neither of them is ontained in the other (see Figure 4).6



Figure 4: Two possible kinds of avoiding double wedges.It is easy to see that, aording to this de�nition, two non-ollinear segments in theprimal plane are avoiding if and only if they are mapped to avoiding double wedges.Swithing to the dual plane, Theorem 1.3 an now be reformulated as follows.Theorem 3.2. Let L be a set of n pairwise non-parallel lines in the plane, not allof whih pass through the same point. Then the set of all double wedges bounded bypairs of lines in L has at least 2bn=2 pairwise non-avoiding elements with di�erentapies.Note that the de�nition of double wedges depends on the hoie of the oordinatesystem, so a priori Theorem 3.2 gives a separate statement in eah oordinate frame.However, eah of these statements is equivalent to Theorem 1.3, and that result doesnot depend on oordinates. Therefore, we are free to use whatever oordinate systemwe like. In the �nal part of the analysis (given in Setion 4), we will exploit thisproperty. But until then, no restrition on the oordinate system is imposed.Suppose that a set of 2bn=2 double wedges meets the onditions in Theorem 3.2.Clearly, we an replae eah element of this set, bounded by a pair of lines `1; `2 2 L,by the maximal double wedge with the same apex, i.e., the double wedge bounded bythose lines through `1 \ `2 whih have the smallest and largest slopes. If every pair ofdouble wedges in the original set was non-avoiding, then this property remains validafter the replaement.It is suÆient to prove Theorem 3.2 for the ase when n is even, beause for oddn the statement trivially follows.The proof is onstrutive. Let A(L) denote the arrangement of L, onsisting ofall verties, edges, and faes of the planar map indued by L. We will onstrut a setof n verties of A(L) with distint x-oordinates, and show that the maximal doublewedges whose apies belong to this set are pairwise non-avoiding.We start by de�ning a sequene J of verties v1; v2; : : :, whih will be referred toas juntions. Let L� (resp., L+) denote the subset of L onsisting of the n=2 lineswith the smallest (resp., largest) slopes. If we wish to simplify the piture, we anapply an aÆne transformation that keeps the vertial diretion �xed and arries theelements of L� and L+ to lines of negative and positive slopes, respetively (whene7
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Figure 5: Choosing the �rst juntion v1 in J . The dashed lines, two from L� and twofrom L+, are removed. The next juntion v2 is also shown.the hoie of notation). However, we will never use this property expliitly (althoughthe �gures will reet this onvention).The onstrution proeeds as follows.Step 1: Set i := 1 and L�1 := L�, L+1 := L+.Step 2: If L�i = L+i = ;, the onstrution of J terminates. Otherwise, as we willsee, neither set is empty. Let vi be the leftmost intersetion point between a line inL�i and a line in L+i . Let d�i (and d+i ) denote the number of elements of L�i (andL+i , respetively) inident to vi, and put di = minfd�i ; d+i g. De�ne L�i+1 (and L+i+1) asthe set of lines obtained from L�i (resp., L+i ) by deleting from it the di elements thatare inident to vi and have the smallest (resp., largest) slopes among those inidentlines. (That is, if d�i = d+i , then all lines inident to vi are deleted; otherwise, if, say,d�i > d+i , we are left with d�i �d+i lines through vi that belong to L+i and separate thedeleted elements of L�i from the deleted elements of L+i . See Figure 5.) Set i := i+1,and repeat Step 2.Let J = hv1; v2; : : : ; vki denote the resulting sequene.It is easy to verify the following properties of this onstrution.Claim 3.3. (i) jL�i j = jL+i j, for eah i = 1; : : : ; k.(ii) For every 1 � i < j � k, the juntion vi lies in the left unbounded fae fj ofA(L�j [ L+j ) whih separates L�j and L+j at x = �1 (whose rightmost vertex is vj).vi lies in the interior of fj if d�i = d+i ; otherwise it may lie on the boundary of fj.(iii) Pki=1 di = n=2: 2Next, between any two onseutive juntions vi and vi+1, for 1 � i < k, we speifydi + di+1 � 1 further verties of A(L), alled stations.8



L�i `fi+1 vi+1viL+i
Figure 6: Colleting stations (shown highlighted) between vi and vi+1. The dashedlines are those removed at vi, and the dashed-dotted ones are those removed at vi+1.The �gure depits the subase where a line ` that has been removed at vi+1 also passesthrough vi. In this ase the lines of L�i deleted at vi and the lines of L+i+1 deleted atvi+1 do not generate enough stations.Fix an index 1 � i < k, and onsider the vertial slab between vi and vi+1. ByClaim 3.3 (ii), vi lies inside or on the boundary of the fae fi+1 of A(L�i+1 [ L+i+1),whose rightmost vertex is vi+1. See Figure 6. Hene, the segment e = vivi+1 isontained in the losure of fi+1. Now at least one of the following two onditions issatis�ed: (a) all the di lines removed from L+i and all the di+1 lines removed from L�i+1pass above e, or (b) all the di lines removed from L�i and all the di+1 lines removedfrom L+i+1 pass below e. (We aution the reader that this statement is not totallyobvious when e belongs to the boundary of fi+1.)Assume, by symmetry, that (a) holds. Denote the lines removed from L+i by`+1 ; : : : ; `+di, listed aording to inreasing slopes, and those removed from L�i+1 by`�1 ; : : : ; `�di+1, listed aording to dereasing slopes. De�ne the set of stations Si in thevertial slab between vi and vi+1 as the olletion of all intersetion points of `+di withthe lines `�1 ; : : : ; `�di+1 , and all intersetion points of `�di+1 with the lines `+1 ; : : : ; `+di .Clearly, we have jSij = di + di+1 � 1 suh points; see Figure 6.Finally, we have to onsider the portions of the plane to the left of v1 and to theright of vk and ollet there a set Sk of dk + d1 � 1 additional stations. Atually,exploiting the fat that we an (almost) freely selet the oordinate system used forthe duality transform, we will be able to selet dk+d1�1 suitable stations, so that allof them, or all but one, lie to the left of v1. The proper hoie of the oordinate systemas well as the details of the onstrution of Sk are desribed in the next setion.Let Q = J [�[ki=1Si�. In view of Claim 3.3 (iii), the total number jQj of juntions
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and stations equalsjQj = jJ j+ kXi=1 jSij= k + k�1Xi=1 (di + di+1 � 1) + (dk + d1 � 1)= 2 kXi=1 di = n:To omplete the proof of Theorem 3.2 (and hene of Theorem 1.3), we need toverifyClaim 3.4. Assoiate with eah element q 2 Q the maximal double wedge W (q) (notontaining the vertial line through q), whih is bounded by a pair of lines passingthrough q. Then the resulting set of n double wedges has no two avoiding elements.We lose this setion by verifying the last laim for the set of wedges fW (q)jq 2Q nSkg. The extension to the general ase is postponed to the last setion, where Skis de�ned.Let u; v 2 Q n Sk with u lying to the left of v. We distinguish three ases:Case A: Both u and v are juntions.Put u = vi and v = vj, with i < j. Then W (v) is bounded by a line ` 2 L�j andby a line `0 2 L+j . By Claim 3.3(ii), vi lies between these two lines, and thus belongsto W (v).Case B: u is a juntion and v is a station not in Sk.Put u = vi and let Sj be the set of stations that ontains v, where i � j. ThenW (v) is bounded by two lines `; `0, where either ` 2 L�j and `0 2 L+j+1, or ` 2 L�j+1and `0 2 L+j . By onstrution, we have in both ases ` 2 L�j and `0 2 L+j , and theanalysis is ompleted as in Case A.Case C: u is a station not in Sk and v is a juntion or a station not in Sk.Let Si be the set of stations ontaining u. The arguments in Case A and Case Bimply that vi 2 W (v). If v is also a station in Si or v = vi+1 then it is easy to verify,by onstrution, that W (u) and W (v) are non-avoiding (see Figure 6). Suppose thenthat v lies to the right of vi+1. Then both vi and vi+1 lie in the left wedge of W (v),and u is inident to a line � that passes through vi and to a line �0 that passes throughvi+1. If u =2 W (v) then a boundary line of W (v) must separate u from vi and vi+1, inwhih ase v 2 W (u); see Figure 7.
10
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Figure 7: Illustrating Case C of the proof that W (u) and W (v) annot be avoiding.
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Figure 8: The primal onstrution of R� and R+.4 Wrapping Up { The End of the ProofIn this setion, we de�ne the missing set of stations Sk, and extend the proof ofClaim 3.4 to handle also elements of Sk. We need an elementary geometri fat thatis easier to formulate in the primal setting.Lemma 4.1. Let R be a set of n non-ollinear points in the plane, let n be even, andlet r be any vertex of the onvex hull of R. Then there exists a partition of R into twon=2-element subsets, R� and R+, whose onvex hulls are disjoint and whih have aommon inner tangent m0 passing through r.Proof: Rotate a direted line ` ounterlokwise about r, starting with all the pointsof R n frg lying to the left of `, until the losed halfplane to the right of ` ontainsfor the �rst time more than n=2 points. De�ne R� to be the set R0 of points in theopen halfplane to the right of `, plus the �rst n=2� jR0j points of ` \ R along `. m0oinides with the �nal position of `. See Figure 8. 211



Let m1 denote the other inner tangent of the onvex hulls of R� and R+. Nowhoose an orthogonal (x; y)-oordinate system whose y-axis is a line stritly separatingR� and R+. Suppose without loss of generality that(a) R+ and R� are to the left and to the right of the y-axis, respetively,(b) r 2 R�, and() m0 is oriented from r away from the other ontat point(s), and the positivey-diretion lies ounterlokwise to it. See Figure 8.In the dual piture, R� and R+ beome n=2-element sets of lines, L� and L+,having negative and positive slopes, respetively. Applying the onstrution desribedin the previous setion to L := L� [ L+, we obtain a sequene of juntions J =hv1; v2; : : : ; vki and sets of stations S1; : : : ; Sk�1.Sine m1 is the line with the largest slope onneting a point of R+ and a pointof R�, our duality implies that m�1, the dual of m1, is the leftmost intersetion pointbetween a line of L+ and a line of L�. Hene, we have v1 = m�1. As our onstrutionsweeps the dual plane from left to right, we ollet juntions and stations whose duallines rotate lokwise from m1 onwards.Claim 4.2. At least one of the following two onditions will be satis�ed:(i) The last juntion, vk, is idential to m�0, the dual of m0.(ii) r�, the dual of r 2 R�, passes through vk and is the unique element of L�deleted during the proedure at vk (so that dk = 1).Proof: Suppose that during the proedure r� is deleted at a juntion vj, for somej � k. Clearly, v�j passes through r and at least one point t 2 R+.If in the primal plane v�j passes through another point r0 6= r of R�, then v�j = m0(otherwise it has to lie lokwise to m0 and then it annot meet any point of R+). Inthis ase, in the dual plane there annot be any intersetion point between a line ofL� and a line of L+ to the right of vj, so that j = k. That is, we have v�k = m0, and(i) holds.If in the primal plane v�j does not pass through any element r0 2 R� other thanr, then we have dj = 1. If j = k, then ondition (ii) is satis�ed. So we an assumethat j < k and v�k 6= m0. Take any two lines `� 2 L� and `+ 2 L+ in the dual planethat are deleted during the proedure at the last juntion vk. By assumption andonstrution, we have `� 6= r, and the slope of the segment `�+`�� � v�k onneting theirduals in the primal plane (i.e., the slope of v�k) is smaller than that of the segmenttr. We laim that the two segments `�+`�� � v�k and tr � v�j are avoiding. Indeed,`�+`�� must meet m0 to the left of r, or else r would not be an extreme point of R(see Figure 9). For a similar reason, `�� must lie above v�j . These fats, together withthe slope relationship between v�j and v�k, imply that the two segments are avoiding.This, in turn, implies that the wedges W (vk) and W (vj) are avoiding, ontraditingClaim 3.4 (Case A). 2 12



R+ R�m0
r v�kv�j

t `��`�+
Figure 9: The segments tr and `�+`�� must be avoiding.The above argument is valid for any oordinate system whose y-axis stritly sep-arates the sets R� and R+. We speify a oordinate system with this property asfollows.Choose the y-axis to be very lose to m0, so that, in the dual plane the slope ofevery line of L passing through m�0 has smaller absolute value than the slope of anyother line of L; that is, the x-oordinates of the points ofm0\R have smaller absolutevalues than those of any other point of R. See Figures 10(a) and 11(a).Now we are in a position to de�ne the set of stations Sk. Pass to the dual plane.The �rst juntion, v1, lies inside or on the boundary of the fae fk of A(L�k [ L+k ),whose rightmost vertex is vk, so that the segment e = v1vk is ontained in the losureof fk.Suppose �rst that vk = m�0. We an assume by symmetry that in the dual plane allthe d1 lines removed from of L�1 = L� during the proedure pass below e, and all thedk lines of L�k pass above e (as in the preeding setion, this statement is not totallyobvious when e lies on the boundary of f). Let `�1 ; : : : ; `�d1 and ��1 ; : : : ; ��dk denote theremoved lines of L�1 and of L�k , respetively, listed in the dereasing order of theirslopes. By the speial hoie of our oordinate system, eah line `�i intersets everyline ��j to the left of v1. Indeed, the slope of the primal segment (��j )�(`�i )� is largerthan that of m1, beause (��j )� 2 m0 lies below m1 and to the left of (`�i )� 2 m1;see Figure 10(a). (We note that the assumption that all lines in L�1 pass stritlybelow vk implies that  := m0 \m1 is not dual to any line in L�1 , implying that eah(��j )� does indeed lie to the left of every (`�i )�.) De�ne the last set of stations, Sk,as the olletion of all intersetion points of `�d1 with the lines ��1 ; : : : ; ��dk , and allintersetion points of ��dk with the lines `�1 ; : : : ; `�d1 . See Figure 10(b). Clearly, wehave jSkj = dk + d1 � 1 suh points, all lying to the left of v1.Suppose next that vk 6= m�0. In this ase, aording to Claim 4.2, vk lies on r�and dk = 1. Refer to Figure 11. Again, let `�1 ; : : : ; `�d1 denote the lines removed fromL�1 = L� at v1, listed in the dereasing order of their slopes. In the dual plane, theline r� passes above v1 and, by the hoie of the oordinate system, it intersets every13
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(a)
R+ m1 = v�1(`�d1 )�

(b)
v1 vk`�1`�2 ��1��2 = r�

t
m0 = v�kr R�(��d1�1)�

Figure 10: The ase vk = m�0 of the onstrution of Sk. (a) The primal struture. (b)The stations in Sk (highlighted to the left of v1).`�i to the left of v1, with the possible exeption of `�1 . The intersetion r� \ `�1 an lieto the right of v1 (and of vk) only if the point  := m0\m1 belongs to R� and is dualto a line removed at v1, in whih ase that line must be `�1 = �. Note that in thisase r� \ `�1 = r� \ � is idential to the point m�0 dual to m0, and the hoie of theoordinate system implies that this is the rightmost vertex of A(L) on r�. We de�neSk to be the set of intersetion points between the lines `�1 ; : : : ; `�d1 and r�.1 Thus,either all points of Sk, or all but one (namely, m�0) lie to the left of v1. Clearly, wehave jSkj = d1 = dk + d1 � 1, as required.We have to omplete the proof of Claim 3.4. It remains to show the following:Claim 4.3. For any u 2 Q and any v 2 Sk, the maximal wedges W (u) and W (v)assoiated with them are non-avoiding.Proof: If both u and v belong to Sk, then the laim is obviously true. From now onsuppose that u 62 Sk. Then we have u 2 fvig [ Si [ fvi+1g, for some 1 � i < k.We start with the ase vk = m�0. Let v 2 Sk be the intersetion point of twolines `; �, passing through v1 and vk, respetively, whih, without loss of generality,we assume to belong to L�, If u is ontained in the double wedge bounded by ` and�, then u 2 W (v), so that W (u) and W (v) are non-avoiding. Otherwise, sine v liesto the left of v1, u lies either above � or below `. If u is above �, then it is not ajuntion, so it must be the rossing point of a line `+ 2 L+ and a line `� 2 L� whihare removed during the proedure at juntion vi and at juntion vi+1, respetively.See Figure 12(a). Both vi and vi+1 lie on or below �, so that the left portion of thedouble wedge bounded by `� and `+ ontains v. Thus, we have v 2 W (u). If, on the1Note the assymmetry between this ase, where the stations are onstruted using lines in L�only, and the previous ase, where the stations an be onstruted using either lines of L� or linesof L+, depending on the relative position of the lines inident to v1 and vk.14
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m1 = v�1(`�d1)� `�d1� = `�1 m�0
Figure 11: The ase vk 6= m�0 of the onstrution of Sk. (a) The hoie of theoordinate frame. (b) The dual piture.
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Figure 12: The proof that W (u) and W (v) are non-avoiding when v is a station tothe left of v1.other hand, u is below `, as in Figure 12(b), then it is either a juntion or a station,and it is the rossing point of a line `� 2 L� and a line `+ 2 L+, eah of whih isremoved at juntion vi or at juntion vi+1. Now `� must pass above (or through) v1and hene above v, while `+ must pass below v. Again we an onlude that the leftportion of the double wedge bounded by `� and `+, and thus W (u), ontains v.If vk 6= m�0, the above argument an be repeated verbatim, unless m�0 2 Sk andv = m�0; so assume this to be the ase. Now it is simplest to establish the laim inthe primal plane, by noting that the segment dual to W (v) lies on the line m0, andthat, by onstrution (sine u =2 Sk), the segment dual to W (u) must onnet a pointof R� to a point of R+, and thus must interset m0, showing that these two segmentsare non-avoiding. 2By verifying the last laim, we have ompleted the proof of Claim 3.4 and heneof Theorem 3.2. This was our last debt.
15
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