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Abstract

We define the notion of a geometric graph in R
3. This is a graph drawn in R

3

with its vertices drawn as points and its edges as straight line segments connecting

corresponding points. We call two edges of G strongly avoiding if there exists an

orthogonal projection of R
3 to a two dimensional plane H such that the projections of

the two edges on H are contained in two different rays, respectively, with a common

apex that create a non-acute angle. We show that a geometric graph on n vertices in

R
3 with no pair of strongly avoiding edges has at most 2n− 2 edges. As a consequence

we get a new proof to Vázsonyi’s conjecture about the maximum number of diameters

in a set of n points in R
3.

1 Introduction

A topological graph is a graph drawn in the two dimensional plane (or equivalently on a two
dimensional sphere) with its vertices drawn as points (usually in general position) and its
edges drawn as Jordan arcs connecting corresponding points. We require that whenever two
edges of a topological graph meet at a point, they either properly cross or meet at a common
vertex. A geometric graph in the plane is a topological graph where the edges are straight
line segments.

Definition 1. A topological graph G is called a generalized thrackle if every pair of edges
of G meet an odd number of times.

The notion of a generalized thrackle was first introduced by Lovász, Pach, and Szegedy
in [LPS97], in connection with Conway’s thrackle conjecture. It was shown by Cairns and
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Nikolayevsky ([CN00]) that a generalized thrackle on n vertices can have at most 2n − 2
edges.

We relate the notion of a generalized thrackle to the following notion of centrally sym-
metric S2-lifting of a graph.

Definition 2. Let G be a graph on a set V of n vertices. A centrally symmetric S2-lifting

of G is a bipartite topological graph G̃ embedded on the two dimensional sphere S2 centered
at the origin, together with a correspondence f between the set of vertices of G and the set
of vertices of one color class of G̃, with the following properties:

1. The drawing of G̃ is centrally symmetric on S2, with no two edges crossing.

2. The set of vertices of G̃ consists of the disjoint union of {f(v)|v ∈ V } and {−f(v)|v ∈
V }.

3. Two vertices v1, v2 ∈ V are connected by an edge in G if and only if f(v1) and −f(v2)
are connected by an edge in G̃.

Observe that if a graph G on n vertices has a centrally symmetric S2-lifting G̃, then G

has at most 2n−2 edges. Indeed, this is because G̃ is a bipartite planar graph on 2n vertices
that has twice as many edges as G. Therefore, twice the number of edges in G is at most
2(2n) − 4 = 2(2n − 2).

We show the following characterization theorem:

Theorem 1. Let G be a finite graph. G can be realized as a generalized thrackle if and only

if it has a centrally symmetric S2-lifting.

Let P be a set of points in R
3. A diameter of P is an unordered pair of points of P with

maximum distance among all pairs of points in P . The diameter graph of P is the graph
whose vertices are the points of P and its edges are the diameters of P .

Vázsonyi conjectured (see [E46]) that a set P of n points in R
3 admits at most 2n−2 dis-

tinct diameters. Vázsonyi’s conjecture was proved to be tight independently by Grűnbaum
([Gr56]), Heppes ([Hep56]), and Straszewizc ([St57]). All those proofs of Vázsonyi’s conjec-
ture use the notion of spherical polytopes, that are different in nature from ordinary polytopes
and, for example, are not necessarily 3-connected, as was shown by Kupitz, Martini, and
Perles ([KMP]).

In this paper we generalize the notion of a geometric graph to three dimensions an show
that in this context Vázsonyi’s conjecture is in fact a consequence of a more general result.

A geometric graph in R
3 is a graph drawn in R

3 with its vertices drawn as points and its
edges drawn as straight line segments connecting corresponding points.

Definition 3. Two disjoint segments (edges of a geometric graph) e and f in R
3 are called

strongly avoiding if there is an orthogonal projection of R
3 onto some two-dimensional plane

H such that the projections of e and f on H are contained in two different rays, respectively,
with a common apex that create a non-acute angle. (See Figure 1.)
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Figure 1: Possible projections of pairs of strongly avoiding edges.

Observe that two parallel segments are strongly avoiding according to Definition 3. This
can be seen by projecting the two segments on a plane perpendicular to both. More generally,
any two disjoint coplanar segments are strongly avoiding according to Definition 3. Observe
also that the property of being strongly avoiding is invariant under isometries of R

3.

The following theorem and its corollary imply Vázsonyi’s conjecture, as we will show that
no two edges in a diameter graph in R

3 are strongly avoiding.

Theorem 2. Let G be a geometric graph in R
3. If G has no pair of strongly avoiding edges,

then G has a centrally symmetric S2-lifting.

Observe that the following corollary is an immediate consequence of Theorem 1 and
Theorem 2.

Corollary 1. Let G be a geometric graph on n vertices in R
3. If G has no pair of strongly

avoiding edges, then G has at most 2n − 2 edges and it can be realized as a generalized

thrackle.

For the proof of Theorem 2 we define the following notion of independent interest.

Definition 4. For any three distinct points x, a, b ∈ R
3 we denote by Lx(a, b) the set of all

lines passing through x and a point on the straight line segment whose endpoints are a and
b.

Definition 5. Let S2 be a two dimensional sphere, centered at the origin o. Let P be a union
of distinct pairs of antipodal points on S2. A labeling of the points of P with labels from
an alphabet A is called a crossing-free antipodal labeling if the following three conditions on
the labeling are satisfied:

1. Every set of points assigned with the same label is contained in an open hemisphere
of S2, and in particular no two antipodal points are assigned the same label.

2. No two pairs of antipodal points are assigned the same pair of labels.
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3. If p1 and p2 are assigned a label a and q1 and q2 are assigned a label b where a 6= b,
then Lo(p1, p2)∩Lo(q1, q2) is empty unless precisely one point of p1 and p2 is antipodal
to either q1 or q2, in which case Lo(p1, p2) ∩Lo(q1, q2) consists only of the line through
these two antipodal points.

We denote this kind of labeling by L = L(P,A). For a crossing-free antipodal labeling
L = L(P,A) there is a natural graph, denoted by GL, that we associate with it. The
underlying vertex set of GL is A. Two labels a, b ∈ A are connected by an edge if there is
an antipodal pair of points in P labeled with a and b, respectively. Therefore, the number
of edges in GL is exactly the number of antipodal pairs of points in P .

Lemma 1. Let S2 be a two dimensional sphere, centered at the origin. Let P be a union

of distinct pairs of antipodal points on S2. Assume that there is a crossing-free antipodal

labeling L(P,A) of the points of P with an alphabet A. Then GL, the graph associated with

L, has a centrally symmetric S2-lifting.

We remark that a similar idea for the derivation of Vázsonyi’s conjecture through a
crossing-free antipodal labeling was carried out independently by Swanepoel ([S]). Swanepoel
gives a direct, short, and elegant proof of Vázsonyi’s conjecture, without going through the
more general result in Theorem 2, and in fact shows that the diameter graph has a centrally
symmetric S2-lifting. For related ideas regarding Vázsonyi’s conjecture we refer the reader
also to [D00].

2 Proof of Theorem 1

For the proof of Theorem 1 we will need the following easy lemma:

Lemma 2. Let U be a set of points on a sphere S, centered at the origin, and assume that

no two points of U are antipodal. Let U∗ denote the set of points antipodal to the points in

U . There exists a simple closed curve C on S, centrally symmetric with respect to the origin,

that separates the points of U from the points of U∗ on S.

Proof. We prove the lemma by induction on |U |. For |U | = 1 the lemma is clear and one
can take C to be any great circle on S not passing through the single point in U .

Assume |U | > 1. Let x ∈ U be any point in U . Find an appropriate curve C ′ for the
set U \ {x}. Let S1 denote the connected component of S \ C ′ which contains the points of
U \ {x}. Let S2 denote the other component of S \C ′. If x happens to be in S1, then we are
done. If x is accidentally on C ′, then a small modification of C ′ will do. Otherwise x must
be in S2. Let y and z be any two close point on C ′ and let C ′

yz denote the smaller portion of
C ′ between y and z. Let α be a simple curve with endpoints y and z that is contained in S2

such that the union of α and C ′
yz is a simple closed curve surrounding x but not any point

of U∗. Now define C to be the curve obtained from C ′ by deleting C ′
yz as well as −C ′

yz from
C ′ and adding to it α and −α. C is the desired centrally symmetric simple closed curve on
S.
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Proof of Theorem 1. Let G be a graph on a set of vertices V that has a centrally symmetric
S2-lifting G̃. Let f : V −→ S2 denote the correspondence between the vertices of G and the
vertices of one color class of G̃, as guaranteed by Definition 2. We wish to show that G can
be realized as a generalized thrackle. Let U be the set {f(v)|v ∈ V } and let U∗ be the set
of antipodal points to the points in U , U∗ = {−u|u ∈ U}. Let C be the centrally symmetric
simple closed curve on S2 guaranteed by Lemma 2 with respect to the sets U and U∗. Let
S1 be the connected component of S2 \ C that contains the points of U . We will draw the
graph GL as a generalized thrackle on the surface S1 obtained from S1 by joining to it the
segments [x,−x] for every x ∈ C (observe that S1 is homeomorphic to a two dimensional
sphere).

The vertices of the drawing will be the points in U . For every a, b ∈ V that are connected
by an edge in G we draw an edge between f(a) and f(b) on S1 in the following way:
Recall that f(a) and −f(b) are connected by an edge in G̃. Denote the curve representing
this edge by α. We think of α as a function, α(t) : [0, 1] −→ S2, where α(0) = f(a),
α(1) = f(b). −α is the curve representing the edge connecting between f(b) and −f(a) in
G̃. By Jordan’s theorem α crosses C an odd number of times. Let 0 < t1 < . . . < t2k+1 < 1
be all the points where α(ti) ∈ C. Then draw the edge between f(a) and f(b) as follows:
start with α([0, t1]) then add to it the segment [α(t1),−α(t1)] and continue with −α([t1, t2])
add the segment [−α(t2), α(t2)] and continue with α([t2, t3]) and so on. Eventually, the last
portion of the curve is −α([t2k+1, 1]) ending at f(b). Consider now two distinct edges eab and
ecd of the drawing connecting say f(a) to f(b) and f(c) to f(d) (possibly {a, b}∩{c, d} is not
empty), respectively. Let α denote the curve representing the edge in G̃ between f(a) and
−f(b) on S2 and let β denote the curve representing the edge in G̃ between f(c) and −f(d)
on S2. eab is made of portions of α and −α together with an odd number of segments of the
form [x,−x] where x ∈ C. Similarly, ecd is made of portions of β and −β together with an
odd number of segments of the form [x,−x] where x ∈ C. Since no two of the curves α, −α,
β, and −β cross each other, eab and ecd cross an odd number of times at the origin only.

Therefore, any two edges in the above drawing of G on S1 cross an odd number of times.
This drawing is still not a generalized thrackle because two edges in the drawing, incident to
the same vertex, meet an even number of times (odd number of crossings and an additional
meeting point at the common vertex). This can be fixed by modifying the drawing in a small
neighborhood of each vertex f(v) ∈ U and adding an extra crossing point to every pair of
edges incident to the same vertex. This is illustrated in Figure 2.

We have thus showed that any graph with a centrally symmetric S2-lifting can be realized
as a generalized thrackle. To see the other direction, that any generalized thrackle has a
centrally symmetric S2-lifting we use Conway’s doubling technique and a result in [CN00]
about the structure of generalized thrackles.

Let G be a generalized thrackle. If G is bipartite, then G is planar. In this case let V1

and V2 be the two color classes of G. Let H be a crossing-free drawing of G on the lower
hemisphere of S2. Denote in this drawing the image of each v ∈ V1∪V2 by g(v). Observe that
−H is another crossing-free drawing of G, on the upper hemisphere of S2. It is now easy to
see that H ∪−H is a centrally symmetric S2-lifting of G. Indeed, define the correspondence
f between the vertices of G and those of H∪−H by f(v) = g(v) for v ∈ V1 and f(v) = −g(v)
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Figure 2: the local change of the drawing near a vertex

for v ∈ V2.

If G is not bipartite, then let V be the set of vertices of G and let C = {v1, . . . , v2k+1}
be an odd cycle in G, where vi is a neighbor in G of vi+1 for every 1 ≤ i < 2k + 1 and v2k+1

is a neighbor of v1. It is not hard to see (for details we refer the reader to [CN00]) that
G \ C is a bipartite graph. Let A and B denote the two color classes of G \ C. Following
[CN00], perform Conway’s doubling technique on the odd cycle C. In this procedure we
introduce two vertices xi, yi for each vertex vi, and we define a new graph G′ on the set of
vertices A ∪ B ∪ {x1, y1, . . . , x2k+1, y2k+1}. In this graph the edges between vertices from A

and vertices from B are the same as they are in G. We connect a vertex v ∈ A to xi in G′ if
v is connected to vi in G. We connect a vertex v ∈ B to yi in G′ if v is connected to vi in G.
In addition we connect xi to yi+1 and yi to xi+1 for every 1 ≤ i < 2k +1, and finally x2k+1 is
connected to y1 and y2k+1 is connected to x1. Therefore x1, y2, x3, . . . , x2k+1, y1, x2, . . . , y2k+1

is a cycle C ′ of length 2(2k + 1) in G′. As shown in [CN00] (Lemma 2 there) G′ is bipartite
and can be realized as a generalized thrackle. Hence G′ is planar. Moreover, it is shown in
[CN00] (Lemma 4 there) that G′ has a planar embedding where C ′ is a face (of size 2(2k+1))
of the embedding.

Consider a drawing H of G′ as a topological crossing-free graph on the lower hemisphere of
S2. Let g denote the correspondence between vertices of G′ and the vertices of the drawing H .
In this drawing we make sure that g(x1), g(y2), g(x3), . . . , g(x2k+1), g(y1), g(x2), . . . , g(y2k+1)
appear in that cyclic order on the equator of S2 and that for every 1 ≤ i ≤ 2k + 1 g(xi) =
−g(yi), and the edges between g(xi) and g(yi+1) and between g(yi) and g(xi+1) are contained
in the equator of S2.

Define G̃ to be H ∪ −H and the correspondence f between vertices of G and vertices
in the drawing H ∪ −H is defined by f(v) = g(v) for v ∈ A, f(v) = −g(v) for v ∈ B, and
f(vi) = g(yi) for every 1 ≤ i ≤ 2k + 1.

To see that indeed G̃ is a centrally symmetric S2-lifting of G observe that G̃ is centrally
symmetric by definition. Let u, v be two vertices of G that are neighbors in G, we show that
f(u) and −f(v) are neighbors in G̃.

6



Case 1. u ∈ A and v ∈ B. Then f(u) = g(u) and f(v) = −g(v). In the drawing H g(u) is
connected by an edge to g(v), hence f(u) is connected by an edge in G̃ to −f(v) as required.

Case 2. u ∈ A and v = vi ∈ C. In this case u and xi are connected by an edge in G′,
f(u) = g(u) and f(v) = g(yi) = −g(xi). g(u) and g(xi) are connected by an edge in H .
Therefore f(u) and −f(v) are connected by an edge in G̃.

Case 3. u and v are consecutive vertices in the cycle C, say u = vi ∈ C and v = vi+1 ∈ C.
In this case f(u) = g(yi) and f(v) = g(yi+1). yi and xi+1 are neighbors in G′, hence g(yi)
and g(xi+1) are connected by an edge in H . Therefore, f(u) = g(yi) is connected by an edge
in G̃ to −f(v) = −g(yi+1) = g(xi+1).

Case 4. u ∈ B and v = vi ∈ C. In this case u and yi are connected by an edge in G′,
f(u) = −g(u) and f(v) = g(yi). g(u) and g(yi) are connected by an edge in H . Hence −g(u)
and −g(yi) are connected by an edge in −H . Therefore f(u) = −g(u) and −f(v) = −g(yi)
are connected by an edge in G̃.

All other cases of neighboring vertices in G are symmetric and treated similarly. In
exactly the same manner one can show that all neighboring vertices in G̃ are of the form
f(u),−f(v) for two neighboring vertices u, v in G.

3 Proof of Lemma 1

For each label a ∈ A let Ta denote the union of all geodesics on S2 connecting pairs of points
labeled with a. Observe that each Ta is contained in an open hemisphere of S2, and hence
Ta is disjoint from −Ta. By our construction

Ta ∪ −Ta = S2 ∩
(

⋃

p,q∈P labeled a

Lo(p, q)
)

.

Therefore, because of the third condition in Definition 5 of a crossing free antipodal
labeling, for any two distinct labels a and b, Ta ∪−Ta is disjoint from Tb ∪−Tb, unless there
is a pair of antipodal points pa and pb in P labeled with a and with b, respectively. In the
latter case Ta ∩ −Tb = {pa} and Tb ∩−Ta = {pb}.

It is readily seen that {±Ta|a ∈ A} is a collection of connected sets on S2 every two of
which are either disjoint or touch at a single point.

By choosing a point va on each Ta and considering their antipodal points −va on S2, it
is not hard to see that one can draw a crossing-free centrally symmetric topological graph G̃

on S whose vertices are {±va|a ∈ A}. In this graph va is connected by an edge to −vb if and
only if Ta and −Tb touch and this in turn is if and only if there are two antipodal points on
P labeled with a and with b, respectively. G̃ is, therefore, a centrally symmetric S2-lifting
of GL.
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4 Proof of Theorem 2

We prove Theorem 2 as a direct application of Lemma 1. Let G be a geometric graph on n

vertices v1, . . . , vn in R
3, with no pair of strongly avoiding edges. Let S be a sphere centered

at the origin o. For every edge e = (vivj) of G place two antipodal points pe,i and pe,j on
S such that the directed line −−→vivj is parallel to the directed line −−−−→pe,jpe,i. Then assign to pe,i

the label ′i′ and to pe,j assign the label ′j′. This way we get a set P composed of pairs of
antipodal points on S labeled with labels from A = {1, . . . , n}. Denote this labeling by
L(P,A). Observe that the pairs of antipodal points in P are indeed distinct as there are no
two parallel edges in G.

We will show that unless G is a star, L(P,A) is a crossing-free antipodal labeling accord-
ing to Definition 5. It will then follow from Lemma 1 that GL has a centrally symmetric
S2-lifting. However, observe that by the definition of L(P,A), GL is isomorphic to the orig-
inal graph G, and therefore Theorem 2 will follow. In case G is a star, then it clearly can
be realized as a generalized thrackle, and hence by Theorem 1 it has a centrally symmetric
S2-lifting.

First observe that no two distinct pairs of antipodal points in P are labeled with the same
pair of labels because the labeling of a pair of antipodal points is in one to one correspondence
with neighboring vertices in G.

Next we claim that unless G is a star, the set of all points on S with the same label, say
a, is contained in an open hemisphere of S. To see this let e be an edge of G that is not
incident to va. Let vb be a vertex of e and project R

3 orthogonally in the direction of the
line through va and vb. Under this projection va and vb project to a point z, and the edges
incident to va as well as e project to segments which have z as an endpoint. Because no pair
of edges in G is strongly avoiding, the projection of every edge incident to va must create an
acute angle with the projection of e. This means that the set of all neighbors of va in G is
contained in an open half-space bounded by a plane through va. This implies that the set
of all points on S, labeled with a, is contained in an open hemisphere of S.

It is left to verify the third condition in Definition 5. Assume to the contrary that there
are two points pe1,a, pe2,a on S labeled with a and two other points pf1,b, pf2,b on S, labeled
with b such that Lo(pe1,a, pe2,a)∩Lo(pf1,b, pf2,b) contains at least one line ℓab that without loss
of generality does not pass through neither pe1,a nor through pe2,a.

We will show that one of the edges e1, e2 and one of the edges f1, f2 are strongly avoiding,
contradicting our assumptions.

We need the following easy observation.

Lemma 3. Let e and f be two disjoint segments in R
3. Assume that there exist two perpen-

dicular planes Ke and Kf such that Ke contains e and misses the relative interior of f , and

Kf contains f and misses the relative interior of e, then e and f are strongly avoiding.

Proof. Let H be a plane perpendicular to both Ke and Kf . The orthogonal projections of
e and f on H are contained in two perpendicular rays with a common apex. Therefore, e

and f are strongly avoiding.
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Recall that the edges e1 and e2 are parallel to the segments ope1,a and ope2,a, respectively.
Similarly, the edges f1 and f2 are parallel to the segments opf1,b and opf2,b, respectively. Let
f ′

1 and f ′
2 be the segments obtained from f1 and f2, respectively, by the translation that

takes vb to va. Let H be a plane perpendicular to ℓab.

He

va

Hf ′

z-axisK

f ′
2

e2

e1

f ′
1

x-axis

Figure 3: A view from the y-axis direction: the projection on H

Let He be the plane containing e1 and e2 and let Hf ′ be the plane containing f ′
1 and f ′

2.
Both He and Hf ′ are perpendicular to H .

Without loss of generality assume that va is the origin, He is the (x− y)-plane, and H is
the (x−z)-plane. Therefore, the line lab is parallel to the y-axis. We will assume with loss of
generality that the negative part of the y-axis is included the cone, with apex va, generated
by e1 and e2, otherwise reflect R

3 with respect to the (x − z)-plane. We will assume that
e1 and f ′

1 are in the half-space {x ≥ 0}, while e2 and f ′
2 are in the half-space {x ≤ 0}.

Denote by e1, e2, f ′
1, and f ′

2 the orthogonal projections on H of the segments e1, e2, f
′
1, and

f ′
2, respectively. Therefore, e1 and f ′

2 create a non-acute angle, and so do e2 and f ′
1. Without

loss of generality we assume that f ′
1 is in the half-space {z ≥ 0}, and hence f ′

2 is in the
half-space {z ≤ 0} (otherwise reflect R

3 with respect to the (x − y)-plane). Let K be the
plane that passes through the origin and is perpendicular to H and Hf ′ (see Figure 3).

We will obtain a contradiction by considering the possible locations of vb. Without loss
of generality we assume that vb is on or above He (for otherwise, rotate at an angle π the
entire geometric graph G counterclockwise about the y-axis).

Case 1. vb is on or below Hf ′ . In this case the projections of e2 and f1 are contained in
two rays with a common apex that create a non-acute angle. Hence e2 and f1 are strongly
avoiding, a contradiction (see Figure 4).

Case 2. vb is above Hf ′ and in the half-space {x ≥ 0}. Assume first that the projection on
He of the line through f1 misses the relative interior either of e1 or of e2. Without loss of
generality assume that the projection on He of the line through f1 misses the relative interior
of e1. Let K ′ be the plane through f1 perpendicular to He. K ′ misses the relative interior
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x-axis

K z-axis

Hf ′

va
f1

f2

vb

e2
He

e1

Figure 4: Case 1: vb is above He and below Hf ′ . A view from the y-axis direction

of e1 while He misses the relative interior of f1. It now follows from Lemma 3 that f1 and
e1 are strongly avoiding, a contradiction.

We will therefore assume that the projection on He of the line ℓ through f1 crosses the
relative interiors of both e1 and e2. Because the negative part of the y-axis is included in

x-axis

va

y-axis

e1

f1

e2

ℓ

x-axis

K z-axis

Hf ′

va

e2He

f1

f2

vb

e1
vb

Figure 5: Case 2: On the left - a view from the y-axis direction. On the right - a view from
the z-axis direction.

the cone (whose apex is the origin) generated by e1 and e2, it follows that the projection of ℓ

on He must cross the negative part of the y-axis (see Figure 5). Rotate the entire geometric
graph G about the z-axis in the counterclockwise direction and keep track of the projections
of e1, e2, and f1 on H (we emphsize that throughout the rotation only the geometric graph
G is effected while the planes such as H , He, and Hf remain fixed). The projection of f1

on H becomes parallel to the z-axis as soon as the projection of f1 on He is parallel to the
y-axis. Since the projection of ℓ on He crosses the relative interior of both e1 and e2, then
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before the projection of f1 on He is parallel to the y-axis, the direction of either e1 or of
e2 must coincide with the direction of the y-axis. At this point the projection of one of e1

and e2 on H is a point, the origin. However, the projection of f1 on H is a segment with
positive slope contained in the quadrant {x, y ≥ 0}. It follows that the projection of f1 and
the origin (which is the projection of one of e1 and e2 on H) are contained in two different
rays with a common apex (the projection of vb on H) that create a non-acute angle. Hence,
f1 and one of e1 and e2 are strongly avoiding, a contradiction.

x-axis

K z-axis

Hf ′

va

e2He

vbf2

f1

e1

Figure 6: Case 3. The projection on H : a view from the y-axis direction.

Case 3. vb is below K (but above He). See Figure 6. This case can be resolved by switching
the role of e1 and e2 with the role of f1 and f2 and then referring to the above Case 2. To
see this, rotate R

3 about the y-axis until Hf ′ coincides with the (x − y)-plane, and f ′
1 is

contained in {x ≥ 0}. Then reflect R
3 with respect to the (y − z)-plane.

Case 4. vb is above K and in the half-space {x ≤ 0} (see Figure 7).

x-axis

K z-axis

Hf ′

va

e2He

vb

f1

f2

e1

α

Figure 7: Case 4. The projection on H : a view from the y-axis direction.
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Case 4(i). The angle between either e1 or e2 and the negative part of the y-axis is non-acute.
See Figure 8.

If the projection on He of the line through f1 misses the relative interior either of e1 or
of e2, then we act as in Case 2: Without loss of generality assume that the projection on
He of the line through f1 misses the relative interior of e1. Let K ′ be the plane through f1

perpendicular to He. K ′ misses the relative interior of e1 while He misses the relative interior
of f1. It now follows from Lemma 3 that f1 and e1 are strongly avoiding, a contradiction.

Hence, assume that the projection on He of the line ℓ through f1 crosses the relative
interiors of both e1 and e2. In this case, since the negative part of the y-axis is included in
the cone generated by e1 and e2, the projection of ℓ on He must cross the negative part of
the y-axis.

x-axis

va

y-axis

vb

e1

e2

f1

x-axis

y-axis

va

e2

vb

f1

e1

ℓ

ℓ

Figure 8: Case 4(i). Either e1 or e2 creates a non-acute angle with the negative part of the
y-axis. A view from the z-axis direction.

If e1 creates a non-acute angle with the negative part of the y-axis, then the slope of the
projection of ℓ on He must be positive and vb must belong to the half-space {y ≤ 0}. Let vc

denote the vertex of f1 other than vb.

Rotate the entire geometric graph G about the z-axis in the counterclockwise direction
and keep track of the projections of e1, e2, and f1 on H . In particular define α to be the
angle ∡vcvbo, where vc and vb are the projections of vc and vb, respectively, on H , and keep
track of the size of α throughout the rotation. At the beginning α is non-acute. During the
rotation α increases as long as it is not equal to π.

Since the projection of ℓ on He crosses the relative interior of both e1 and e2, then before
the projection of f1 on He is parallel to the y-axis, the direction of e2 must coincide with the
direction of the y-axis. At this point the projection of e2 on H is a point, the origin. If the
value of α has not reached yet π, then α is non-acute. This means that the projections of f1

and of e2 on H are contained in two rays with a common apex (the projection of vb on H)
that create a non-acute angle, a contradiction. If the value of α has reached π at some point
before, then at that point the projection of f1 on H has a positive slope and is collinear with
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the origin. This implies that the projections of f1 and e2 on H are contained in two different
rays with a common apex (the origin) that create a non-acute angle, a contradiction.

Consider now the case in which e2 creates a non-acute angle with the negative part of
the y-axis. If vb belongs to the half-space {y ≥ 0}, then Rotate the entire geometric graph G

about the z-axis in the clockwise direction and repeat the analysis in the previous argument.
Now, before the projection of f1 on H is parallel to the y-axis, the direction of e1 must
coincide with the direction of the y-axis. At this point the projection of e1 on H is a point,
the origin. If the value of α has not reached yet π, then α is non-acute. This means that
the projections of f1 and of e1 on H are contained in two rays with a common apex (the
projection of vb on H) that create a non-acute angle, a contradiction. If the value of α has
reached π at some point before, then at that point the projection of f1 on H has a positive
slope and is collinear with the origin. This implies that the projections of f1 and e2 on H

are contained in two different rays with a common apex (the origin) that create a non-acute
angle, a contradiction.

If vb belongs to the half-space {y ≤ 0}, then rotate the entire geometric graph G about
the z-axis until e2 is contained in the negative part of the y-axis. At this point f1 is contained
in the quadrant {x, y ≥ 0} and its projection on H has a positive slope. This implies that the
projections of f1 and e2 on H are contained in two rays with a common apex (the projection
of vb on H) that create a non-acute angle, a contradiction.

Case 4(ii) The angle between the negative part of the y-axis and both e1 and e2 is acute.

If the projection on He of the line through f1 misses the relative interior either of e1

or of e2, then we act as before: Without loss of generality assume that the projection on
He of the line through f1 misses the relative interior of e1. Let K ′ be the plane through f1

perpendicular to He. K ′ misses the relative interior of e1 while He misses the relative interior
of f1. It now follows from Lemma 3 that f1 and e1 are strongly avoiding, a contradiction.

x-axis

va

y-axis

e1

f1

e2

x-axis

va

y-axis

e1

f1

e2

ℓ

vb

ℓ
vb

Figure 9: Case 4(ii). Both e1 and e2 create an acute angle with the negative part of the
y-axis. A view from the z-axis direction.

Hence, assume that the projection on He of the line ℓ through f1 crosses the relative
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interiors of both e1 and e2. It follows that the projection on He of the line ℓ through f1

crosses the negative part of the y-axis (see Figure 9). If the slope of the projection of ℓ on
He is non-negative we repeat the argument in Case 4(i) (in the sub-case of Case 4(i) where
the projection of ℓ on He has a non-negative slope) and rotate the entire geometric graph
G about the z-axis in the counterclockwise direction, to obtain a contradiction by showing
that f1 and e2 are strongly avoiding.

If the slope of the projection of ℓ on He is negative (see Figure 9), then we will aim to
show that the projection of the line through e1 on Hf misses the relative interior of either
f1 or of f2. Hence, if K ′ is the plane through e1 perpendicular to Hf , then K ′ misses the
relative interior of either f1 or of f2. Hf misses the relative interior of e1, since e1 is below
Hf . Lemma 3 now implies that e1 and one of f1 and f2 are strongly avoiding.

To see that indeed the projection of the line through e1 on Hf misses the relative interior
of either f1 or of f2, consider f ′

1 and f ′
2 again. Because the slope of the projection of ℓ on

He is negative, it follows that f ′
1 is contained in the half-space {y ≤ 0} (see Figure 9).

Let H ′ be the plane {y = −1}. Let E1 be the intersection point of the line through e1

with H ′. Let F ′
1 be the intersection of of the line through f ′

1 with H ′. Denote by O the point
(0,−1, 0) on H ′, that is, the intersection of the y-axis with H ′ (see Figure 10). The angle
∡F ′

1OE1 is acute, because the angle created by f ′
1 and e1 is acute.

O

F ′
1

BE1

Figure 10: Case 4(ii). The plane H ′, a view from the y-axis direction.

Because f1 is parallel to ℓ and because the projection of ℓ on He intersects the relative
interior of both e1 and e2, it follows that the projection of f ′

1 on He is not contained in the
cone generated by e1 and e2. Therefore, as ∡F ′

1OE1 is acute, the projection B of F ′
1 on

the line through O and E1 is such that E1 belongs to the segment [O, B]. But then the
projection of E1 on the line through O and F ′

1 belongs to the segment OF ′
1. If f ′

2 creates an
acute angle with the negative part of the y-axis, then let F ′

2 denote the intersection point
of the line through f2 with H ′. O belongs to the segment [F ′

1, F
′
2] on H ′ and therefore also

E1 belongs to this segment. This means that the projection on Hf ′ of the line through e1

belongs to the cone generated by f ′
1 and f ′

2. Hence the projection on Hf of the line through
e1 cannot intersect the relative interiors of both f1 and f2.

If f ′
2 creates a non-acute angle with the negative part of the y-axis, then we switch the

roles of f1 and f2 with the roles of e1 and e2 and conclude by Case 4(i). Indeed, if the
negative part of the y-axis is contained in the cone generated by f ′

1 and f ′
2, then rotate

R
3 about the y-axis until Hf ′ coincides with the (x − y)-plane and f ′

1 is contained in the
half-plane {x ≥ 0}. Then reflect R

3 with respect to the (x − y)-plane. Observe that now f ′
2
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creates a non-acute angle with the negative part of the y-axis. We can now apply Case 4(i)
to conclude that e1 and one of f1 and f2 are strongly avoiding to get a contradiction.

If the negative part of the y-axis is contained in the cone generated by f ′
1 and f ′

2, then
rotate R

3 about the y-axis until Hf ′ coincides with the (x − y)-plane and f ′
1 is contained in

the half-plane {x ≥ 0}. Then reflect R
3 with respect to the (x − y)-plane, and reflect R

3

again with respect to the (x− z)-plane Observe that now f ′
1 creates a non-acute angle with

the negative part of the y-axis. Hence by Case 4(i), e1 and one of f1 and f2 are strongly
avoiding, a contradiction.

5 Vázsonyi’s conjecture

Theorem 2 implies very easily Vázsonyi’s conjecture about the maximum number of diam-
eters in a set of n points in R

3. Consider the diameter graph G on a set P of n points in
R

3, that is, the geometric graph whose vertices are the points of P where two points are
connected by an edge if they determine a diameter of the set. We will show that G satisfies
the conditions of Theorem 2. This will imply that the number of diameters in P is at most
2n − 2.

We need to show that no two edges of G are strongly avoiding. Assume to the contrary
that e = (v1, v2) and f = (v3, v4) are two strongly avoiding edges of G. Let H be a plane
such that the orthogonal projections of e and f on H are contained in two rays, with a
common apex o, that create an a non-acute angle.

Without loss of generality assume that H is the (x − y)-plane and that o is the origin.
Let u be the unit vector in H in the direction of the ray containing the projection of e on
H . Let w be the unit vector in H in the direction of the ray containing the projection of f

on H . Let z be the unit vector in the direction of the z-axis, perpendicular to H .

Writing v1, v2, v3, and v4 in terms of u, w, z, there are nonnegative numbers λ1, λ2, λ3, λ4,
and real numbers c1, c2, c3, and c4, such that

v1 = λ1u + c1z

v2 = λ2u + c2z

v3 = λ3w + c3z

v4 = λ4w + c4z

Considering the squared mutual distances between v1, v2, v3, v4 and the fact that the
scalar product of u and w is non-positive (since the angle between u and w is non-acute),
we obtain the following equations and inequalities.
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(λ1 − λ2)
2 + (c1 − c2)

2 = 1 (1)

(λ3 − λ4)
2 + (c3 − c4)

2 = 1 (2)

λ2

1 + λ2

3 + (c1 − c3)
2 ≤ 1 (3)

λ2

1 + λ2

4 + (c1 − c4)
2 ≤ 1 (4)

λ2

2 + λ2

3 + (c2 − c3)
2 ≤ 1 (5)

λ2

2 + λ2

4 + (c2 − c4)
2 ≤ 1 (6)

Assume without loss of generality that λ1 ≥ λ2 and λ3 ≥ λ4. From (1) and (3) it follows
that

(c1 − c2)
2 ≥ (c1 − c3)

2, (7)

with equality only if λ2 = λ3 = λ4 = 0.

From (1) and (4) it follows that

(c1 − c2)
2 ≥ (c1 − c4)

2 (8)

with equality only if λ2 = λ4 = 0.

From (2)and (3) it follows that

(c3 − c4)
2 ≥ (c3 − c1)

2 (9)

with equality only if λ4 = λ1 = λ2 = 0.

From (2) and (5) it follows that

(c3 − c4)
2 ≥ (c3 − c2)

2 (10)

with equality only if λ2 = λ4 = 0.

Summing (1), (2) and deducting the sum of (3) and (6) we deduce:

(c1 − c4)(c2 − c3) ≤ 0 (11)

with equality only if λ2 = λ4 = 0.

Summing (1), (2) and deducting the sum of (4) and (5) we deduce:

(c1 − c3)(c2 − c4) ≤ 0 (12)

with equality only if λ2 = λ4 = 0.

If c2 = c4, we get equality in (12) and hence λ2 = λ4 = 0. Therefore, v2 = v4 a
contradiction. Hence we assume without loss of generality that c2 > c4.
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If c4 > c1, then c2 > c4 > c1. This is impossible when (9) and (10) are valid.

If c4 < c1, then from (11) c2 ≤ c3. If c2 = c3, then we have equality in (7) and therefore
λ2 = λ3 = 0. It follows that v2 = v3 a contradiction. Therefore, if c4 < c1 we get c2 < c3.
Hence c3 > c2 > c4. This is impossible when (7) and (8) are valid.

If c1 = c4, then we get equality in (9). Therefore, λ1 = λ4 = 0 and hence v1 = v4, a
contradiction.

As an immediate corollary of Theorem 2 and Theorem 1 and the fact that there are no
two avoiding edges in the diameter graph in R

3, we obtain the following:

Corollary 2. Let P be a finite set of points in R
3 and let G be the diameter graph of P .

Then G can be realized as a generalized thrackle.
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