From 3-manifolds to planar graphs and cycle-rooted trees

Michael Polyak

Technion

November 27, 2014
"Confirming the belief that music and math are related, I will now sing some lovely French equations."
Encode 3-manifolds by planar weighted graphs
Pass from various presentations of 3-manifolds to graphs and back
Similar encodings for related objects: links in 3-manifolds, manifolds with $Spin$- or $Spin^c$-structures, elements of the mapping class group, etc.
Encoding is not unique: finite set of simple moves on graphs (related to electrical networks)
Various invariants of 3-manifolds transform into combinatorial invariants
Configuration space integrals \rightarrow counting of subgraphs
Low-degree invariants \rightarrow counting of rooted forests
A chainmail graph is a planar graph G, decorated with \mathbb{Z}-weights:

- Each vertex v is decorated with a weight $d(v)$; A vertex is balanced, if $d(v) = 0$ (can think about $d(v)$ as a “defect” of v); a graph is balanced, if all of its vertices are.

- Each edge e is decorated with a weight $w(e)$. A 0-weighted edge may be erased. Multiple edges are allowed. Two edges e_1, e_2 connecting the same pair of vertices may be redrawn as one edge of weight $w(e_1) + w(e_2)$. Looped edges are also allowed; a looped edge may be erased.
Given a chainmail graph G with vertices v_i and edges e_{ij}, $i,j = 1, 2, \ldots, n$ we construct a surgery link L as follows:

- **vertex** v_i \rightarrow standard planar unknot L_i
- **± 1-weighted edge** e_{ij} \rightarrow ± 1-clasped ribbon linking L_i and L_j
Linking numbers and framings of components are given by a graph Laplacian matrix Λ with entries

$$l_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^{n} w_{ik}, & i = j \end{cases}$$

Example (Constructing a surgery link)

Different graphs and surgery links for the Poincare homology sphere
It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

- Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions, plumbing, double covers of S^3 branched along a link, etc.
- Similar constructions work also for a variety of similar objects: links in 3-manifolds, 3-manifolds with $Spin$- or $Spin^c$-structures, elements of the mapping class group, etc.

Some info about M can be immediately extracted from G. In particular, M is a \mathbb{Q}-homology sphere iff $\det \Lambda \neq 0$ and then $|H_1(M)| = |\det \Lambda|$; also, signature of M is the signature $\text{sign}(\Lambda)$ of Λ.
Proofs and explicit constructions ...

... No time to present here.
Calculus of chainmail graphs

An encoding of a manifold by a chainmail graph is non-unique. However, there is a finite set of simple moves which allow one to pass from one chainmail graph encoding a manifold to any other graph encoding the same manifold. The most interesting moves are

They are related to a number of topics: Kirby moves, relations in the mapping class group, electrical networks and cluster algebras, and Reidemeister moves for link diagrams (via balanced median graphs) -
Combinatorial invariants of 3-manifolds

Chern-Simons theory leads to a lot of knot and 3-manifold invariants. Attempts to understand the Jones polynomial in these terms led to quantum knot invariants, the Kontsevich integral, configuration space integrals and other constructions. In particular,

\[
\text{Perturbative CS-theory} \xrightarrow{\text{Feynman diagrams}} \text{Configuration space integrals}
\]

- Rather powerful: contain universal finite type invariants of knots and 3-manifolds
- Very complicated technically
- Extremely hard to compute

We expect a similar combinatorial setup in our case: An appropriate CS-theory on graphs \[\xrightarrow{\text{discrete}}\text{Discrete sums over subgraphs}\]

Types of subgraphs are suggested by the theory: uni-trivalent graphs for links; trivalent graphs for 3-manifolds.
This actually works! Here is the setup: we pass from the manifold M to its combinatorial counter-part \rightarrow a chainmail graph G. In both cases we use summations over similar Feynman graphs.

- Vertices of a Feynman graph:
 configurations of n points in $M \rightarrow$ sets of n vertices in G

- Edges of a Feynman graph:
 propagators in $M \rightarrow$ paths of edges in G

- Integration over the configuration space \rightarrow sum over subgraphs

- Compactifications and anomalies due to collisions of points in $M \rightarrow$
 appearance of degenerate graphs when several vertices merge together
Let’s see this on an example of the simplest non-trivial perturbative invariant, corresponding to the Feynman graph with 2 vertices, i.e., the \(\Theta \)-graph:

\[
\begin{array}{c}
1 & 2 \\
\end{array}
\]

We count maps \(\phi : \Theta \to G \) with weights and multiplicities. One can think about such a map as a choice of two vertices \(v_i \) and \(v_j \) of \(G \), connected by 3 paths of edges which do not have any common internal vertices:

The weight \(W(\phi) \) of \(\phi \) is the product \(L(\phi) \prod_{e \in \phi(G)} l_e \), where \(L(\phi) \) is the minor of \(\Lambda \), corresponding to all vertices of \(G \) not in \(\phi(\Theta) \).
Degenerate maps should be counted as well. Such degeneracies appear when two vertices of the Θ-graph collide together to produce a figure-eight graph:

$$\begin{align*}
1 & \rightarrow \\
2 &
\end{align*}$$

Diagonal entries of Λ also enter in the formula, when one lobe (or possibly both) of the figure-eight graph becomes a looped edge in the 4-valent vertex. The weight of such a loop in v_i is l_{ii}. E.g., for the map

$$\begin{align*}
i & \rightarrow \\
\rightarrow & \\
j & \rightarrow \\
\rightarrow & \\
k &
\end{align*}$$

we have $W(\phi) = L(\phi) \cdot l_{ij} \cdot l_{jk} \cdot l_{ki} \cdot l_{ii}$. In the most degenerate cases — a triple edge or double looped edge — weights need to be slightly adjusted.
“I think you should be more explicit here in step two.”
Theorem

\[\Theta(G) = \sum_\phi W(\phi) \] is an invariant of \(M \). If \(M \) is a \(\mathbb{Q} \)-homology sphere (i.e., \(\det \Lambda \neq 0 \)), we have

\[\Theta(G) = \pm 12 |H_1(M)| (\lambda_{CW}(M) - \frac{\text{sign}(M)}{4}) \]

where \(\lambda_{CW}(M) \) is the Casson-Walker invariant.

Conjecture

The next perturbative invariant can be obtained in a similar way by counting maps of \(\triangle \) and \(\square \) to \(G \).

Note that \(\Theta(G) \) is a polynomial of degree \(n + 1 \) in the entries of \(\Lambda \). This leads to

Conjecture

Any finite type invariant of degree \(d \) of 3-manifolds (with an appropriate normalization) is a polynomial of degree at most \(n + d \) in the entries of \(\Lambda \).
Remark

Instead of counting maps $\phi : \Theta \to G$, we may count Θ-subgraphs of G, taking symmetries into account:

Example

For the (negatively oriented) Poincare homology sphere one has $G = \frac{3}{2} \frac{2}{5}$. Thus $\Lambda = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$, $\det \Lambda = -1$ (so M is a \mathbb{Z}-homology sphere), $\text{sign}(\Lambda) = 0$, and to compute $\Theta(G)$ we count

$$2 \cdot (\begin{array}{c} \blackcirc \\ \blackcirc \end{array} + \begin{array}{c} \blackcirc \\ \blackcirc \end{array}) + (\begin{array}{c} \blackcirc \\ \blackcirc \end{array} + \begin{array}{c} \blackcirc \\ \blackcirc \end{array}) + 2 \cdot \begin{array}{c} \blackcirc \\ \blackcirc \end{array}$$

to get

$$\Theta(G) = 2 \cdot (1 \cdot 2^2 + 3 \cdot 2^2) + (1^2 + 2)(-3) + (3^2 + 2)(-1) + 2 \cdot (2^3 - 2) = 24$$

and obtain $\lambda_{CW}(M) = -2$.
Counting cycle-rooted trees

Recall that the matrix Λ was defined as the graph Laplacian for the weight matrix W:

$$l_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^{n} w_{ik}, & i = j \end{cases}$$

An expression for $\Theta(M)$ in terms of the original weight matrix W (with d_{ii} on the diagonal) is even simpler and can be achieved by a certain generalized version of the celebrated Matrix Tree Theorem. For this purpose, we add to G a new balancing "super-vertex" v_0, connecting every vertex v_i of G to v_0 by an edge of the weight $w_{0i} = -d_{ii}$. We also change weights of all old vertices to 0 to get a balanced graph \hat{G}:
The classical Matrix Tree Theorem states that \(\det \Lambda \) equals to the weighted number of the spanning trees of \(\widehat{G} \), where a tree \(T \) is counted with the weight \(\prod_{e \in T} w(e) \).

It turns out, that one can pass from \(\Theta(G) \) to a similar count of spanning cycle-rooted trees in \(\widehat{G} \):

This approach has a number of interesting applications and ramifications:

- Simpler computational formulas: no more degenerated cases, simpler graphs.
- Counting spanning cycle-rooted trees in \(\widehat{G} \) to get \(\Theta(G) \) leads to a new generalized version of the classical theorem Matrix Tree Theorem.
Finally, cycle-rooted trees can be interpreted as closed orbits of vector fields on a graph:

A **discrete vector field on a graph** is a choice of at most one outgoing edge at each vertex.

Critical vertices are those with no outgoing edges. An orbit may end in a critical point - these are trees with roots in critical points (and all edges oriented toward the root).

There are also **closed orbits**; these are cycle-rooted trees (with all edges oriented towards the cycle).

In these terms, the determinant $\det \Lambda$ counts vector fields on G with no closed orbits. The Θ-invariant counts vector fields with one closed orbit.
Time for speculations:

There is a highly suggestive continuous analogue for such a closed orbits counting: Gopakumar-Vafa’s Gauge Theory/Geometry duality between the CS theory and closed strings on a resolved conifold. The closed strings theory suggested by Gopakumar-Vafa leads to a certain Floer-type symplectic homology setup.

It seems that in our discrete setting Gopakumar-Vafa duality boils down to the Laplace transform on graphs and corresponds to a generalized Matrix Tree Theorem.

We thus expect that there is a suitable chain complex and a homology theory in the cycle-rooted trees setup. Its construction is challenging.
"On the other hand, my responsibility to society makes me want to stop right here."