Zbl 0858.41023
Pinkus, Allan
TDI-subspaces of $C(\mathbb{R}^d)$ and some density problems from neural networks.

Space $W \subset C(\mathbb{R}^d)$ is said to be TDI if it is invariant under actions of the group generated by translations and dilations (in each coordinates) of \mathbb{R}^d. Let M_f be the closure of the smallest TDI-space which contains f.

Theorem 1. $M_f \neq C(\mathbb{R}^d) \iff$ there is $\alpha \in \mathbb{Z}_d^+$ such that $D^\alpha f = 0$ (in the weak sense). Let $A_\alpha := \text{span}\{x^\beta; \beta \leq \alpha\}$; here some coordinates of α may be infinite but all $\beta \in \mathbb{Z}_d^+$. Theorem 2. Every TDI-space is a finite sum of the A_α.

Classification: 41A63 41A30 92B20
Keywords: dilation invariant space; density problem

doi:10.1006/jath.1996.0042

Y.A. Brudnyi (Haifa)