The authors propose a new method of approximation which maintains the geometric flavor of Chebyshev’s characterization of the best uniform approximation while using an L_q-type measure of distance. More specifically, let $\|f\| = \max\{|\int_a^b f(x)\,dx| : 0 \leq a \leq b \leq 1, f(x) > 0 \text{ on } (a,b) \text{ or } f(x) < 0 \text{ on } (a,b)\}$ and $\|f\|^* = \max\{|\int_a^b f(x)\,dx| : 0 \leq a \leq b \leq 1, f(x) \geq 0 \text{ on } (a,b) \text{ or } f(x) \leq 0 \text{ on } (a,b)\}$. Then the authors prove two alternation type characterization theorems for best approximation to $f \in C[0,1]$ from the space Π_n of algebraic polynomials using as measures the distance functions $\|\cdot\|$ and $\|\cdot\|^*$. A de la Vallée Poussin type of theorem is also given. The "cost" for these characterization theorems is that neither $\|\cdot\|$ nor $\|\cdot\|^*$ is a norm.

Classification: 41A10 41A50

Keywords: Chebyshev’s characterization; best uniform approximation