Let B denote a compact Hausdorff space containing at least $n + 1$ points and let $C(B)$ be the normed linear space of real-valued continuous functions on B endowed with the uniform norm $\|f\| = \max_{x \in B} |f(x)|$. Denote by U_n an n-dimensional subspace of $C(B)$. For a given $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ and $\beta = (\beta_1, \ldots, \beta_n)$ satisfying $-\infty \leq \alpha_i < \beta_i \leq \infty$ ($i = 1, \ldots, n$) and a given basis (u_1, \ldots, u_n), set

$$U(\alpha, \beta) = \{ u = \sum_{i=1}^{n} a_i u_i : \alpha_i \leq a_i \leq \beta_i, \quad (i = 1, 2, \ldots, n) \}.$$

The authors are interested in the problem of best approximating functions in $C(B)$ from $U(\alpha, \beta)$. A number of results, characterizing best approximants and determining when uniqueness holds, are proved.

S.M. Shah

Classification: 41A50 41A45 41A15

Keywords: compact Hausdorff space; uniqueness

doi:10.1093/imanum/8.1.1