Zbl 0948.41014
Pinkus, Allan

On a problem of G. G. Lorentz.

Let \(B \) be a finite union of connected compacts and let \(C(B) \) be the space of real-valued continuous functions on \(B \). Let \(U_n \) and \(V_m \) be \(n \) and \(m \)-dimensional linear subspaces of \(C(B) \), respectively. The problem is to find conditions on \(U_n \) and \(V_m \), such that each \(f \) in \(C(B) \) has at most one best approximant from the set \(U_n/V_m \) in the uniform norm on \(B \). The author solves this problem in the case, where \(U_n \) and \(V_m \) are Haar spaces. In particular he analyses the case of a periodic Haar space of trigonometric polynomials.

Jacek Gilewicz (Marseille)

Classification: 41A30
Keywords: approximation by generalized rational functions
doi:10.1006/jath.1999.3414