Pinkus, Allan (IL-TECH)

Continuous selections for the metric projection on C_1.

Let K be the closure of a bounded open set in \mathbb{R}^n, and denote by C_1 the normed space of continuous real-valued functions on K with the usual L_1-norm. Let U be a finite-dimensional subspace of C_1. Does there exist an L_1-continuous map $A: C_1 \to U$ such that $\|f - Af\| = \text{dist}(f, U)$ for each $f \in C_1$? The author proves that if such a map exists then U is a “unicity” space; i.e., each f has exactly one best approximation in U. (All metric notions are relative to the L_1-norm.) If K is connected, the same conclusion can be drawn if A is only L_∞-continuous. The proofs are lengthy and ingenious.

E. W. Cheney (1-TX)