Some extremal properties of perfect splines and the pointwise Landau problem on the finite interval.

Pinkus, Allan

Let $W^{(n)}(\sigma) = \{ f: f^{(n-1)} \text{ absolutely continuous on } [0,1], \|f\|_\infty \leq 1, \|f^{(n)}\|_\infty \leq \sigma \}$. The Landau problem on $[0,1]$ for $W^{(n)}(\sigma)$ (as yet unsolved) asks for the value and the extremal function in the problem $\max \{ \|f^{(k)}\|_\infty : f \in W^{(n)}(\sigma) \}$, for $k = 1, \cdots, n-1$. This problem on $(-\infty, \infty)$ has been solved by Kolmogorov and on $[0, \infty]$ by Cavaretta and Schoenberg. The author essentially considers a pointwise version of the above, viz. $\max \{ |f^{(k)}(\xi)| : f \in W^{(n)}(\sigma) \}$ for fixed $\xi \in [0,1]$ and $k \in \{1, \cdots, n-1\}$. For each fixed σ, the author determines a one-parameter family of perfect splines of degree n for which there exists a solution to this problem for each $\xi \in [0,1]$ and $k \in \{1, \cdots, n-1\}$ (i.e., the family depends on σ, but not on ξ or k). Furthermore, each element of this one-parameter set is essential in the sense that for each k it attains the above maximum for some ξ. The method of proof utilizes extremal properties of perfect splines, fixed point arguments, careful zero counting, and exact numerical differentiation formulae.

Avraham A. Melkman (Be’er Sheva’)