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Abstract

A k-dimensional hypertree X is a k-dimensional complex on n ver-
tices with a full (k−1)-dimensional skeleton and

(
n−1

k

)
facets such that

Hk(X; Q) = 0. Here we introduce the following family of simplicial
complexes. Let n, k be integers with k +1 and n relatively prime, and
let A be a (k + 1)-element subset of the cyclic group Zn. The sum

complex XA is the pure k-dimensional complex on the vertex set Zn

whose facets are σ ⊂ Zn such that |σ| = k + 1 and
∑

x∈σ x ∈ A. It
is shown that if n is prime then the complex XA is a k-hypertree for
every choice of A. On the other hand, for n prime XA is k-collapsible
iff A is an arithmetic progression in Zn.

1 Introduction

What is the high-dimensional analogue of a tree? Several approaches
to this question can be found in the literature. Here we follow the lead of
Kalai [1]. We start with some standard notations. All simplicial complexes
we consider X have n vertices, and we always identify the vertex set of X
with the cyclic group Zn. The number of i-dimensional faces of X is denoted
by fi(X). We denote by ∆n−1 the (n− 1)-simplex on the vertex set Zn and

by ∆
(i)
n−1 the i-dimensional skeleton of ∆n−1. A k-hypertree is a simplicial

complex ∆
(k−1)
n−1 ⊂ X ⊂ ∆

(k)
n−1 such that fk(X) =

(
n−1

k

)
and with a vanishing
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(b) XA for A = {0, 1, 3} ⊂ Z7

Figure 1

k-th rational homology Hk(X; Q) = 0. Throughout the paper we assume
that k + 1 is coprime to n. For a ∈ Zn, let Xa be the following collection of
subsets of Zn:

Xa = {σ ⊂ Zn : |σ| = k + 1 ,
∑

x∈σ

x = a} .

For a subset A ⊂ Zn of cardinality k + 1, define the Sum Complex XA by

XA = ∆
(k−1)
n−1 ∪ (∪a∈AXa) .

Example: Let n = 7, k = 2 and A = {0, 1, 3} ⊂ Z7. The 2-dimensional
complex XA (figure 1b) is obtained from the standard 6-point triangulation
of the real projective plane RP2 on the vertices {0, 1, 3, 4, 5, 6} (figure 1a) by
replacing the face {0, 1, 5} with the three faces {0, 1, 2} , {0, 2, 5} , {1, 2, 5} ,
and adding the faces {2, 3, 5}, {0, 2, 6} and {1, 2, 4}. XA is clearly homotopy
equivalent to RP2.

In this paper we are concerned with topological and combinatorial prop-
erties of XA. Let F be a field and let hi(XA; F) = dimFHi(XA; F). Since

XA ⊃ ∆
(k−1)
n−1 it follows that h0(XA; F) = 1 and hi(XA; F) = 0 for 1 ≤

i ≤ k − 2. Since k + 1 is coprime to n, it follows that for any y ∈ Zn,

2



the number of σ ⊂ Zn of cardinality k + 1 that satisfy
∑

x∈σ x = y is
1
n

(
n

k+1

)
. Therefore fk(XA) = k+1

n

(
n

k+1

)
=

(
n−1

k

)
. The Euler-Poincaré relation∑

i≥0(−1)ifi(XA) =
∑

i≥0(−1)ihi(XA; F) then implies that hk−1(XA; F) =
hk(XA; F). In the sequel we assume that the characteristic of F does not
divide n.

Let ω be a fixed primitive n-th root of unity in the algebraic closure F.
For x ∈ Zn let e(x) = ωx. The n × n Fourier matrix M over F is given by
M(u, v) = e(−uv) for u, v ∈ Zn. For a subset B ⊂ Zn of cardinality k+ 1 let
MA,B denote the (k + 1)× (k + 1) submatrix of M determined by A and B.
Let Bn,k denote the family of all (k + 1)-element subsets of Zn that contain
0.

Theorem 1.1.

hk−1(XA; F) = hk(XA; F) =
1

k + 1

∑

B∈Bn,k

dim kerMA,B . (1)

The Fourier transform matrix M = (Muv) of Zn over Q = C is given by
Muv = exp(−2πiuv/n). A classical result of Chebotarëv (see e.g. [3]) asserts
that if n is prime then any square submatrix of M is nonsingular. Theorem
1.1 therefore implies

Corollary 1.2. If n is prime then XA is a k-hypertree.

If A is an arithmetic progression in Zn then MA,B is a Vandermonde
matrix for all B ∈ Bn,k. Hence, by Theorem 1.1, XA is F-acyclic for any F

whose characteristic is coprime to n. More is in fact true. Let σ be a face of
dimension at most k − 1 of a simplicial complex X which is contained in a
unique maximal face τ of X, and let [σ, τ ] = {η : σ ⊂ η ⊂ τ}. The operation
X → Y = X − [σ, τ ] is called an elementary k-collapse. X is k-collapsible if
there exists a sequence of elementary k-collapses

X = X1 → X2 → · · · → Xm = {∅} .

Note that if ∆
(k−1)
n−1 ⊂ X ⊂ ∆

(k)
n−1 is k-collapsible and fk(X) =

(
n−1

k

)
, then X

is Z-acyclic.

Theorem 1.3. Let n be a prime and let A be a subset of Zn of cardinality
k + 1. Then XA is k-collapsible iff A is an arithmetic progression in Zn.

Theorems 1.1 and 1.3 are proved in Sections 2 and 3. In Section 4 we
compute the homology of XA for A = {0, 1, 3}. We conclude in Section 5
with some remarks concerning possible extensions and open problems.
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2 Homology of XA

We first recall some topological terminology (see e.g. [2]). Let X be
a finite simplicial complex on the vertex set V . For a set S and a field
K, let L(S,K) denote the K-linear space of all K-valued functions on S.
The space Cm(X; K) of K-valued m-cochains of X consists of all functions
φ ∈ L(V m+1,K) such that φ(v0, . . . , vm) = sgn(π)φ(vπ(0), . . . , vπ(m)) for any
permutation π on {0, . . . , m}, and such that φ(v0, . . . , vm) = 0 if {v0, . . . , vm}
is not an m-dimensional simplex of X. (In particular, φ(v0, . . . , vm) = 0 if
vi = vj for some i 6= j.) The coboundary operator dm : Cm(X; K) →
Cm+1(X; K) is given by

dmφ(v0, . . . , vm+1) =

m+1∑

i=0

(−1)iφ(v0, . . . , v̂i, . . . , vm+1) .

Let Zm(X; K) = ker dm denote the space of m-cocycles of X over K and let
Bm(X; K) = Im dm−1 denote the space of m-coboundaries of X over K. The
m-dimensional cohomology space of X with coefficients in K is

Hm(X; K) =
Zm(X; K)

Bm(X; K)
.

Let hm(X,K) = dimKH
m(X; K). Then hm(X,K) = hm(X, F) = hm(X; F)

for any algebraic extension K of F. In order to establish Theorem 1.1 we may
therefore assume that F already contains a primitive n-th root of unity ω.

The Fourier transform of a function φ ∈ L(Zk
n; F) is the function F(φ) =

φ̂ ∈ L(Zk
n; F) given by

φ̂(u1, . . . , uk) =
∑

(x1,...,xk)∈Zk
n

φ(x1, . . . , xk)e(−
k∑

j=1

ujxj) .

The Fourier transform is an automorphism of L(Zk
n; F).

The proof of Theorem 1.1 involves computing the image of Hk−1(X; F)
under the Fourier transform. We first consider the Fourier image of the
(k − 1)-coboundaries.

Claim 2.1.

F(Bk−1(XA; F)) = {g ∈ Ck−1(XA; F) : support(g) ⊂ Zk
n − (Zn − {0})k} .
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Proof: Let ψ ∈ Ck−2(XA; F). Then

d̂k−2ψ(u1, . . . , uk) =
∑

(x1,...,xk)∈Zk
n

dk−2ψ(x1, . . . , xk)e(−
k∑

j=1

ujxj) =

∑

(x1,...,xk)∈Zk
n

( k∑

i=1

(−1)i+1ψ(x1, . . . , x̂i, . . . , xk)
)
e(−

k∑

j=1

ujxj) =

k∑

i=1

(−1)i+1
∑

xi

e(−uixi)
∑

x1,...,x̂i,...,xk

ψ(x1, . . . , x̂i, . . . , xk)e(−
∑

j 6=i

ujxj) =

n
k∑

i=1

(−1)i+1δ(0, ui)
∑

x1,...,x̂i,...,xk

ψ(x1, . . . , x̂i, . . . , xk)e(−
∑

j 6=i

ujxj)

where δ(0, ui) = 1 if ui = 0 and is zero otherwise. Therefore

F(Bk−1(XA; F)) ⊂ {g ∈ Ck−1(XA; F) : support(g) ⊂ Zk
n − (Zn − {0})k} .

Equality follows since both spaces have dimension
(

n−1
k−1

)
over F.

�

We next study the Fourier image of the (k − 1)-cocycles of XA. Fix a
φ ∈ Ck−1(XA; F). For a ∈ Zn define a function fa ∈ L(Zk

n; F) by

fa(x1, . . . , xk) = dk−1φ
(
a−

k∑

i=1

xi, x1, . . . , xk

)
=

φ(x1, . . . , xk) +

k∑

i=1

(−1)iφ
(
a−

k∑

j=1

xj , x1, . . . , x̂i, . . . , xk

)
.

Let T be the automorphism of Zk
n given by

T (u1, . . . , uk) = (u2 − u1, . . . , uk − u1,−u1) .

Then T k+1 = I and for 1 ≤ i ≤ k

T i(u1, . . . , uk) = (ui+1 − ui, . . . , uk − ui,−ui, u1 − ui, . . . , ui−1 − ui).
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Claim 2.2. Let u = (u1, . . . , uk) ∈ Zk
n. Then

f̂a(u) = φ̂(u) +
k∑

i=1

(−1)kie(−uia)φ̂(T iu) . (2)

Proof: For 1 ≤ i ≤ k let ψi ∈ L(Zk
n, F) be given by

ψi(x1, . . . , xk) = φ
(
a−

k∑

j=1

xj , x1, . . . , x̂i, . . . , xk

)
.

Then

ψ̂i(u) =
∑

(x1,...,xk)∈Zk
n

φ
(
a−

k∑

j=1

xj , x1, . . . , x̂i, . . . , xk

)
e(−

k∑

j=1

ujxj) .

Substituting

yj =






a−
∑k

ℓ=1 xℓ j = 1
xj−1 2 ≤ j ≤ i
xj i+ 1 ≤ j ≤ k

it follows that

k∑

j=1

ujxj = (a− y1)ui +

i∑

j=2

(uj−1 − ui)yj +

k∑

j=i+1

(uj − ui)yj .

Therefore

ψ̂i(u) = e(−uia)
∑

y=(y1,...,yk)∈Zk
n

φ(y)e(uiy1−
i∑

j=2

(uj−1−ui)yj−
k∑

j=i+1

(uj−ui)yj) =

e(−uia)φ̂(−ui, u1 − ui, . . . , ui−1 − ui, ui+1 − ui, . . . , uk − ui) =

e(−uia)(−1)i(k−i)φ̂(T iu) . (3)

Now (2) follows from (3) since fa = φ+
∑k

i=1(−1)iψi.

�
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For u ∈ Zk
n let Eu = {T iu : 0 ≤ i ≤ k} and let

Lu =
⋂

a∈A

{g ∈ L(Eu, F) : g(u) +

k∑

i=1

(−1)kie(−uia)g(T
iu) = 0}. (4)

Let φ ∈ Zk−1(XA; F). Then for all a ∈ A and (x1, . . . , xk) ∈ Zk
n

fa(x1, . . . , xk) = dk−1φ
(
a−

k∑

i=1

xi, x1, . . . , xk

)
= 0 .

Eqn. (2) then implies that for all a ∈ A and u ∈ Zk
n

φ̂(u) +

k∑

i=1

(−1)kie(−uia)φ̂(T iu) = 0 .

Writing φ̂|Eu
for the restriction of φ̂ to Eu we obtain

Corollary 2.3. Let φ ∈ Ck−1(XA; F). Then φ ∈ Zk−1(XA; F) iff φ̂|Eu
∈ Lu

for all u ∈ Zk
n.

�

Let the symmetric group Sk act on Zk
n by

σ
(
(u1, . . . , uk)

)
= (uσ−1(1), . . . , uσ−1(k))

and let Gn,k denote the subgroup of Aut(Zk
n) generated by T and Sk. The

subset

Dn,k = {(u1, . . . , uk) ∈ (Zn − {0})k : ui 6= uj for i 6= j}

is clearly invariant under Gn,k.

Claim 2.4.

(i) Let σ ∈ Sk and 1 ≤ i ≤ k. Then η = T iσT−σ−1(i) ∈ Sk and sgn(η) =
(−1)k(i+σ−1(i))sgn(σ).
(ii) Any element of Gn,k can be written uniquely as σT i where σ ∈ Sk and
0 ≤ i ≤ k. Gn,k acts freely on Dn,k.
(iii) Lu = LT ju for all u ∈ Dn,k and 0 ≤ j ≤ k.
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Proof: (i) For 1 ≤ ℓ ≤ k let τℓ ∈ Sk be given by

τℓ(i) =






k − ℓ+ 1 + i 1 ≤ i ≤ ℓ− 1
k − ℓ+ 1 i = ℓ
i− ℓ ℓ+ 1 ≤ i ≤ k .

It can be checked that

η = T iσT−σ−1(i) = τ−1
k−i+1στk−σ−1(i)+1 .

Noting that sgn(τℓ) = (−1)kℓ+1 it thus follows that

sgn(η) = sgn(σ)sgn(τk−i+1)sgn(τk−σ−1(i)+1) = (−1)k(i+σ−1(i))sgn(σ) .

(ii) It follows from (i) that

Gn,k = {σT i : σ ∈ Sk , 0 ≤ i ≤ k} .

Let u = (u1, . . . , uk) ∈ Dn,k and let v = (v1, . . . , vk) = σT iu. If i 6= 0 then

k∑

j=1

vj =

k∑

j=1

uj − (k + 1)ui 6=
k∑

j=1

uj

and therefore σT iu 6= u. It follows that Gn,k acts freely on Dn,k and that the
representation of an element of Gn,k as σT i is unique.
(iii) Let g ∈ Lu and a ∈ A. Then

g(T ju) +

k∑

i=1

(−1)ike(−(T ju)ia)g(T
i+ju) =

g(T ju) +

k−j∑

i=1

(−1)ike(−(ui+j − uj)a)g(T
i+ju)+

(−1)(k−j+1)ke(uja)g(u) +

k∑

i=k−j+2

(−1)ike(−(ui−k+j−1 − uj)a)g(T
i+ju) =

(−1)jke(uja)
(
g(u) +

k∑

i=1

(−1)ike(−uia)g(T
iu)

)
= 0. (5)

Hence g ∈ LT ju.
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�

Proof of Theorem 1.1: Let R ⊂ Dn,k be a fixed set of representatives

of the orbits of Gn,k on Dn,k. Then |R| =
|Dn,k|

|Gn,k|
= 1

k+1

(
n−1

k

)
. Consider the

mapping

Θ : Zk−1(XA; F) →
⊕

u∈R

Lu

given by
Θ(φ) =

(
φ̂|Eu

: u ∈ R
)
.

Claim 2.5.

ker Θ = Bk−1(XA; F) .

Proof:

ker Θ = {φ ∈ Zk−1(XA; F) : φ̂|Eu
= 0 for all u ∈ R} =

{φ ∈ Zk−1(XA; F) : φ̂(u) = 0 for all u ∈ Dn,k} = Bk−1(XA; F)

by Claim 2.1.

�

Claim 2.6. Θ is surjective.

Proof: Let (gu : u ∈ R) ∈
⊕

u∈R Lu. Define g ∈ Ck−1(XA; F) by

g(v) =

{
0 v 6∈ Dn,k

sgn(σ)gu(T
ju) v = σT ju where u ∈ R.

Clearly Θ(F−1(g)) = (gu : u ∈ R). To show that F−1(g) ∈ Zk−1(XA; F) it
suffices by Corollary 2.3 to check that g ∈ Lv for all v ∈ Zk

n. If v 6∈ Dn,k then
g|Ev

= 0. Suppose then that v = σT ju ∈ Dn,k where u ∈ R and 0 ≤ j ≤ k.
Combining Claim 2.4(i) and Eq. (5) it follows that

g(v) +
k∑

i=1

(−1)ike(−via)g(T
iv) =

g(σT ju) +

k∑

i=1

(−1)ike(−(σT ju)ia)g(T
iσT ju) =

9



sgn(σ)gu(T
ju)+

k∑

i=1

(−1)ike(−(T ju)σ−1(i)a)(−1)k(i+σ−1(i))sgn(σ)gu(T
σ−1(i)+ju) =

sgn(σ)
(
gu(T

ju) +
k∑

i=1

(−1)ike(−(T ju)ia)gu(T
i+ju)

)
=

= (−1)jksgn(σ)e(uja)
(
gu(u) +

k∑

i=1

(−1)ike(−uia)gu(T
iu)

)
= 0.

�

Claims 2.5 and 2.6 imply that

Hk−1(XA, F) ∼=
⊕

u∈R

Lu . (6)

For u = (u1, . . . , uk) ∈ Dn,k let Bu = {0, u1, . . . , uk}. Then dimLu =
dim kerMA,Bu

. Combining (6) with Claim 2.4(iii) it thus follows that

hk−1(XA; F) =
∑

u∈R

dimLu =

1

k + 1

∑

u∈R

k∑

j=0

dimLT ju =
1

k + 1

∑

B∈Bn,k

dim kerMA,B .

�

3 When is XA collapsible?

In this section we prove Theorem 1.3, so that in this section n is prime. We
find it convenient to maintain the vertices in a face sorted according to the
order induced from N, and also refer to subsets of Fn as sorted vectors and
not only as sets.

10



3.1 Equivalence

Let φ : Fn → Fn be the linear map φ(x) = αx+β. It is clear that the image of
Xa under φ is Xt where t = αa+(k+1)β. We say that the complexes Xa0,...,ak

and Xb0,...,bk
are equivalent iff there exist a permutation π on {b0, . . . , bk} and

α, β s.t. π(bi) = αai + (k + 1)β for every 0 ≤ i ≤ k. Equivalent complexes
are clearly isomorphic.

It is an easy observation that a0, . . . , ak is an arithmetic progression iff
Xa0,...,ak

is equivalent to the complex X0,...,k. We show that X = X0,...,k is
collapsible whence Xa0,...,ak

is collapsible for a0, . . . , ak an arithmetic progres-
sion.

3.2 Proof of sufficiency

To show that X is collapsible we introduce an order ≺R by which we remove
the k-faces fromX. We need first some preliminary definitions. With every k-
face u ∈ X we associate a vector h(u) of dimension ⌈k

2
⌉. The i-th coordinate

in h counts how many integers in the interval [ui, uk−i] do not belong to
{ui, . . . , uk−i}. Namely, the i-th coordinate of h(u) is:

hi(u) := uk−i − ui − (k − 2i)

Clearly hi(u) is non-increasing in i. For every two k-faces u, v ∈ X we say
that u ≺L v if h(u) is lexicographically smaller than h(v). When h(u) = h(v)
we say that u ≡L v. It should be clear that h is invariant under set reversal
i.e. x→ n− x. It is also invariant under shifts that “do not overflow” in the
obvious sense, but we will not be using this fact. If u 6≡L v for some u, v ∈ X,
we denote by δL(u, v) the first index for which h(u) and h(v) differ. Thus if
u ≺L v and δL(u, v) = i then hj(u) = hj(v) for all j < i and hi(u) < hi(v).
For i, j ∈ Fn it is convenient to define ρ(i, j) as i − j if i > j and as j − i
otherwise. This is extended as usual to: ρ(i, A) = min{ρ(i, a) | a ∈ A} and
ρ(A,B) = min{ρ(a, b) | a ∈ A, b ∈ B}.
If u ∈ Xi and v ∈ Xj we say that u ≺I v if i is closer than j to {0, k}, i.e., if
ρ(i, {0, k}) < ρ(j, {0, k}). We say that u ≡I v when ρ(i, {0, k}) = ρ(j, {0, k}),
namely, i = j or i = k − j . Letting i′ = ρ(i, {0, k}), it is clear that u ≺I v
iff i′ < j′. If u 6≡I v, we denote by δI(u, v) = min{i′, j′} = ρ({i, j}, {0, k}) .

We are now ready to define the relation ≺R. This is done in terms of the
relations ≺L and ≺I . To begin, u ≡R v iff u ≡L v and u ≡I v. If u �L v
and u �I v and at least one inequality is proper, then u ≺R v. Finally,

11



when u ≺L v and u ≻I v, the order ≺R is determined according to the
smaller of δI(u, v), δL(u, v). Namely, if δI(u, v) < δL(u, v) then u ≻R v and if
δI(u, v) ≥ δL(u, v) then u ≺R v.
To sum up, for u, v ∈ X:

1. If u ≡I v and u ≡L v then u ≡R v.

2. If u ≡I v and u ≺L v then u ≺R v.

3. If u ≺I v, then u ≺R v unless

(a) u ≻L v and

(b) δL(u, v) ≤ δI(u, v)

In which case u ≻R v.

To clarify this definitions a little bit more, we present an example from the
complex X0,1,2,3 over F7. Let u = {0, 1, 2, 5}, v = {1, 2, 5, 6}. The set u has
two missing integers between 0 and 5 and no missing integers between 1 and
2, hence h(u) = h({0, 1, 2, 5}) = (2, 0). Similarly h(v) = h({1, 2, 5, 6}) =
(2, 2). Also, u ≺L v because (2, 0) is lexicographically smaller than (2, 2).
Furthermore, δL(u, v) = 1 because the first coordinate the vectors differ is
the second coordinate (and we start indexing coordinates from zero). Now
u ∈ X1 since 0 + 1 + 2 + 5 ≡ 1 mod 7. Similarly v ∈ X0. We next calculate
that 1′ = 1 = ρ(1, {0, 7}) and 0′ = 0. Hence v ≺I u because 0′ < 1′,
and δI(u, v) = min{0, 1} = 0. To recap, u ≺L v and v ≺I u, so we turn to
compare 0 = δI(u, v) < δL(u, v) = 1, it follows that in this case the order R is
determined by I, hence {0, 1, 2, 5} = u ≻R v = {1, 2, 5, 6}. A full description
of the order R on X0,1,2,3 over F7 is shown in Figure 2 and Figure 3:

A few words are in order about Figure 2. The rows are sorted by the
lexicographic order of h(·). The columns on the right include all facets of X
sorted by value of i′. Note that for each value of h and each i′ there are two
facets that attain this pair of values. The leftmost column gives the value of
δL(x, y) for every two consecutive lines in the table.

We now turn to show that X can indeed be collapsed in the order ≺R.
That is, for every x ∈ X it is possible to apply an elementary collapse step
to x if all the ≺R-predecessors of x have already been collapsed. In order to
show this, we need to point out an free(k − 1)-face that is contained in x.
What we will show is that for x ∈ Xa, the face x̂ := x \ {xa} is free. (Note

12



Figure 2: X0,1,2,3 parameters over F7

δL(x, y) h(x) i′ = 0 i′ = 1

(0, 0) {2, 3, 4, 5}, {1, 2, 3, 4}
0

(1, 0) {0, 1, 2, 4}, {2, 4, 5, 6} {2, 3, 4, 6}, {0, 2, 3, 4}
1

(1, 1) {0, 1, 3, 4}, {2, 3, 5, 6}
0

(2, 0) {1, 3, 4, 6}, {0, 2, 3, 5} {0, 1, 2, 5}, {1, 4, 5, 6}
1

(2, 1) {1, 3, 5, 6}, {0, 1, 3, 5}
1

(2, 2) {1, 2, 5, 6}, {0, 1, 4, 5}
0

(3, 0) {0, 4, 5, 6}, {0, 1, 2, 6}
1

(3, 1) {0, 3, 5, 6}, {0, 1, 3, 6}

that since x ∈ X = X0,...,k, there indeed must exist some a ∈ {0, . . . , k} s.t.
x ∈ Xa). It may be helpful to mention that a plays a double role here. It is
an index in the vector x as well as the sum of the elements of x. Being free
means that all the k-faces containing x̂, precede x in the order ≺R. A k-face
that contains x̂ has the form y(b) := x̂ ∪ {xa + (b − a)} with 0 ≤ b ≤ k and
b 6= a. Clearly, y(b) is a k-face in X iff xa + (b − a) 6∈ x̂. Also, in this case
y(b) ∈ Xb, as we assume below.

The proof that y(b) ≺R x has two cases:

1. We first consider the case where y(b) �I x. Since y(b) ∈ Xb and x ∈ Xa,
the meaning of y(b) �I x is that b′ ≥ a′. Therefore δI(y

(b), x) which is
the smaller of a′ and b′ equals a′. This means that b lies between a and
k − a (whether a or k − a is bigger is immaterial here).

• Consequently, xa + (b− a) is in the interval [xa′ , xk−a′ ]. It follows
that the first and last a′ − 1 elements of x and y(b) are identical.
In particular, hi(y

(b)) = hi(x) for i < a′.

• We recall that y(b) is created by removing xa from x and replacing
it by the term xa +(b−a). Thus the interval [y

(b)
a′ , y

(b)
k−a′] is shorter

than [xa′ , xk−a′ ]. It follows that the first coordinate where h(y(b))

13



Figure 3: The order of collapse determined by ≺R

{0, 1, 2, 4}, {2, 4, 5, 6} {2, 3, 4, 6}, {0, 2, 3, 4}

{0, 1, 3, 4}, {2, 3, 5, 6}

{1, 3, 4, 6}, {0, 2, 3, 5} {0, 1, 2, 5}, {1, 4, 5, 6}

{1, 3, 5, 6}, {0, 1, 3, 5}

{1, 2, 5, 6}, {0, 1, 4, 5}

{0, 4, 5, 6}, {0, 1, 2, 6}

{0, 3, 5, 6}, {0, 1, 3, 6}

{2, 3, 4, 5}, {1, 2, 3, 4}

≺L,≡I

≺L,≡I

≡L,≺I

≺L,≡I

≺L,≡I

≺L,≻I , δL = 0, δI = 0

≻L,≺I , δL = 1, δI = 0

≺L,≻I , δL = 0, δI = 0

≻L,≺I , δL = 0, δI = 0
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and h(x) differ is the a′-th coordinate, where ha′(y(b)) < ha′(x).
Consequently, y(b) ≺L x and a′ = δL(y(b), x).

• If y(b) ≡I x then we are done, because we already know that
y(b) ≺L x. By definition of ≺R this yields the desired conclusion
y(b) ≺R x.

• If y(b) ≻I x then from the previous points we conclude that a′ =
δL(y(b), x) = δI(y

(b), x). To sum up, y(b) ≺L x and δL(y(b), x) =
δI(y

(b), x), which yields by definition, y(b) ≺R x, as claimed.

2. Now consider the case y(b) ≺I x. This means that b′ < a′. Therefore
b′ = δI(y

(b), x). Consequently b does not lie between a and k − a.

• It follows that xa + (b − a) ∈ [xb′ , xk−b′ ]. Consequently, the first
and last b′ + 1 elements of x and y(b) are identical. In particular,
hi(y

(b)) = hi(x) for i ≤ b′. Thus δL(y(b), x) > b′.

• If y(b) �L x then y(b) ≺R x and we are done.

• If y(b) ≻L x then from the previous points we conclude that
b′ = δI(y

(b), x) < δL(y(b), x). Hence y(b) ≻I x and δI(y
(b), x) <

δL(y(b), x) . Again, by definition, y(b) ≺R x, as claimed.

This completes the proof that X0,...,k is collapsible and hence that X =
Xa0,...,ak

is collapsible whenever a0, . . . , ak is an arithmetic progression.

3.3 Proof of necessity

We now turn to show that if a0, . . . , ak is not arithmetic, then Xa0,...,ak
is

not collapsible. In fact we show that in this case exactly k + 1 elementary
collapse steps can be carried out.
For X ⊆ Fn we denote as usual by X + a the a-shift of X, namely, the set
{x+ a|x ∈ X}. We start with the following simple observation.

Observation 3.1. Let n be a prime. A subset X ( Fn is an arithmetic
progression iff there is an element l for which |(X + l) \X| = 1.

When is the (k − 1)-face x1, . . . , xk free a free face? This is the case iff,
for each k ≥ i ≥ 1 the element xi +

∑k

j=1 xj belongs to the set {a0, . . . , ak}.
If xi +

∑
xj = al it means that x1, . . . , xk cannot be extended to a k-face

in Xal
. This translates into a linear system of equations in x1, . . . , xk whose
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matrix has 2’s along the main diagonal and 1’s elsewhere. Such a matrix
is nonsingular, so the solution is unique. Also, all the k terms xi +

∑
xj

are distinct, so the only choice we have in constructing this linear system is
which of the k + 1 elements in {a0, . . . , ak} to omit. There are k + 1 such
choices which yields k + 1 distinct collapse steps that can be carried out.

We now explicitly describe the k+1 collapse steps that can be carried out.
Each of these collapsible faces has the form x(t) := {a0 + lt, . . . , ak + lt} ∈ Xat

for some l0, . . . lk

The condition x(t) ∈ Xat
determines lt via lt =

at−
∑k

i=0
ai

k+1
. We claim that

the face y := x(t) \ {at + lt} is free. The sum of y’s elements is −lt, so that
for every i 6= t we need to add the term {ai + lt} to y in order to attain the
sum ai. This is, however, impossible since {ai + lt} is a member of y.

We turn to show that after these first k+1 collapse steps are carried out,
there remain no free (k−1)-faces in X. In order for a (k−1)-face y to be free
following the above collapses, y has to be contained in exactly one of these
k+ 1 collapsed faces. Since {a0, . . . , ak} is not an arithmetic progression, by
Observation 3.1, the intersection of any two of the x(t) contains at most k−1
elements. In particular there is no (k− 1)-face that they both contain. Thus
we have to consider only (k − 1)-faces y which are contained in one of the
x(t) and exactly one more k-face.

It follows that y must be of the form x(t) \ {aj + lt} for some j and
t. The sum of y’s elements is at − aj − lt. If y is contained as well in
a k-face z ∈ Xai

, then necessarily zi = z = y ∪ {ai − at + aj + lt}. We
are assuming that y becomes free with the collapse of x(t), so there must
be exactly one index i for which zi is a legal k-face different from x(t). It
follows that x(t) and x(t) +(aj −at) must have k elements in common. Again
by Observation 3.1 this means that the elements in x(t) form an arithmetic
progression, a contradiction. The proof of Theorem 1.3 is now complete.

4 Example: Homology of X{0,1,3}

For a prime p and an integer n indivisible by p, let Up,n be the group of
n-th roots of unity in Fp.

Proposition 4.1. Let k = 2, A = {0, 1, 3}. Let p be a prime and suppose n
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is coprime to 3p. Then

h1(XA; Fp) =
1

3
|
{
{u, v} ⊂ Up,n − {1} : u 6= v and 1 + u+ v = 0

}
| .

Proof: Let B = {0, k, ℓ} with 0 < k < ℓ < n and let u = ω−k, v = ω−ℓ.
Then

detMA,B = det




1 1 1
1 u v
1 u3 v3



 =

uv3 − vu3 + u3 − u− v3 + v = (u− 1)(v − 1)(v − u)(u+ v + 1) .

It follows that

rk MA,B =

{
2 1 + u+ v = 0
3 otherwise.

Thus the Proposition follows directly from Theorem 1.

�

Corollary 4.2. Let k = 2, A = {0, 1, 3}. Let p be a prime and suppose
n = pm − 1 is coprime to 3. Then

h1(XA; Fp) =






n−1
6

p = 2
n−2

6
p = 3

n−4
6

p > 3.

Proof: Clearly F∗
pm = Up,n. Therefore, by Proposition 4.1

h1(XA; Fp) =
1

6
|
{
u ∈ F∗

pm − {1} : −(1 + u) 6∈ {0, 1, u}
}
|.

The Corollary now follows since

{
u ∈ F∗

pm − {1} : −(1 + u) 6∈ {0, 1, u}
}

=






F∗
2m − {1} p = 2

F∗
3m − {±1} p = 3

F∗
pm − {±1,−2,−1

2
} p > 3.

�
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5 Concluding Remarks

Theorem 1.1 provides an explicit description of the homology of the sum
complex XA over fields of characteristic coprime to n. In particular, it follows
via Chebotarëv’s Theorem that if n is prime then XA is Q-acyclic, i.e. XA is
a k-hypertree. When A is an arithmetic progression, XA was shown to be k-
collapsible, and in particular Z-acyclic. One natural question is whether there
exist other A’s for which XA is Z-acyclic. Kalai’s k-dimensional Cayley’s
formula [1] suggests that most k-hypertrees are not Z-acyclic. Likewise we
conjecture that XA is not Z-acyclic for most (k + 1)-subsets A ⊂ Zn. One
possible approach to the question of Fp-acyclicity of XA for primes p ∤ n is
via the following reduction. Let SF(A) be the F-linear space of polynomials
in F[x] spanned by the monomials {xa : a ∈ A}. Theorem 1.1 then implies
that XA is Fp-acyclic iff deg gcd(f(x), xn − 1) ≤ k for all 0 6= f(x) ∈ S

Fp
(A).
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