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Abstract

The Cahn-Hilliard (C-H) equation has been proposed as a model to describe the evolution of a con-

served concentration field during the spontaneously phase separation of a binary fluid mixture below

the critical temperature. After a mixture, in which both components are initially uniformly present

in the domain under consideration, undergoes rapid cooling below the critical temperature, the ho-

mogenous state becomes unstable.

As a result, phase separation occurs and the domain splits into regions which are rich in one

component and poor in the other. So, by decreasing the temperature, the system enters a non-

equilibrium state, and rapidly decomposes into microstructural regions with different phases. Each

phase is characterized by a distinct composition of the individual components, in a manner which

reduces the bulk chemical energy of the system. This formation of micro-structure occurs on a very

fast time scale, and is called spinodal decomposition. Later the dominant length scale of the micro-

structure grows in a process known as a coarsening.

The purpose of this thesis is to understand coarsening phenomena which occur during phase

separation rigorously and to investigate the power laws which govern the evolution of the dominant

length scale. Our main goal is to find the most appropriate upper bounds for the coarsening rates and

how these upper bounds depend on the parameters of the system, such as the temperature, and the

mean concentration.
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Chapter 1

Introduction

The Cahn-Hilliard equation for

ut = 4(−ε24u+ f ′(u)), t > 0, x ∈ Rn, (1− 1− 1)

was proposed for the first time in around 1958 [1, 2] as a model for the process of phase separation of

a binary alloy below the critical temperature. It has since appeared in many other contexts ranging

from micro-film dynamics, the dynamics of polymer flow, as well as in bio-film structure formation,

population dynamics, river bed formation, and image processing. More recently it has appeared in

nano-technology, in models for the stellar dynamics, as well as in the theory of galaxy formation

as a model for the evolution of two components of inter-galactic material [12]. Hence, the Cahn-

Hilliard equation appears not only in the context of modeling very small structures such as in the

micro-structure of binary alloys and bio-films, but also in modeling some very large structures, such

as certain patterning features which have been seen in the inner ”B” ring which revolves around the

planet Saturn [6]. Since this equation appears in a wide diversity of applications, many scientists,

engineers, and mathematicians have had considerable interest in this equation, and much attention

has been paid to this equation. These efforts have included analytical studies, see e.g. F.Otto &

R. V. Kohn [3], asymptotic studies, see e.g. A.Novick-Cohen [22], and numerical studies, see e.g.

V. Calupecky [7], H. Garcke, M. Rumpf & U. Weikkard [37]. In short, the Cahn-Hilliard equation

constitutes one of the leading models for studying phase separation in isothermal, isotropic mixtures.

The details of phase separation of course depend on the initial ratio of the components of the mixture.

If initially both components are present in basically the same ratio or in roughly similar proportions,

a process called spinodal decomposition takes place, followed afterwards by coarsening [7], as we shall

explain in the coming chapters. If initially the mixture contains significantly higher amount of one

component, nuclei of the poorer component form and grow, and phase separation takes place via a

process called nucleation and growth. Generally speaking, the physical and chemical properties of

the compound from which the mixture is made determine the nature of the phase separation process.
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The function u(t, x) in [11],[23] represents the difference of the two concentrations in a two component

system,

u = cA − cB.

Hence, u should satisfy u ∈ [−1, 1], and the function f : R → R should be of ”bistable type” with

three simple zeros. Alternatively u(t, x) can represent the concentration of one of the two components

of the mixture, say u = ca, and therefore should satisfy u ∈ [0, 1]. Assuming that u(t, x) represents the

concentration of one of the two components and that the total mass of each of the two components is

constant, the Cahn-Hilliard equation may be written as

ut = ∇M(u)∇µ, µ = f ′(u)− ε24u, (1− 1− 2)

where the coefficient M(u) > 0 denotes the mobility. Roughly speaking, there are two kinds of

mobilities. The first one is constant mobility with, say M(u) = 1. Another kind, M(u) = u(1− u), is

known as degenerate mobility, which we will try to analyze rigorously. In (1-1-2), µ is the chemical

potential, f(u) is the homogeneous free energy and the parameter ε is an interaction length. Equation

(1-1-2) with M(u) = u(1− u) constitutes a degenerate parabolic equation, and it is referred to as the

Cahn-Hilliard equation with degenerate mobility.

The predicted behavior has a characteristic length scale `(t) which grows as tα, with α = 1/4 or 1/3,

although other values have also been proposed for the manner in which the length scale grows during

the various stages of the coarsening process. Recent studies have shown the influence of anisotropy

on the dynamics of coarsening. Computer simulations [24] show that if the in dimension d = 2 is

modified to include arbitrary surface tension anisotropy, the asymptotic late stage-scaling growth law

`(t) ∼ t1/3 remains unchanged. The structure factor S(k, t) is bound into angular wedges and is

found to exhibit distinct behavior in each wedge, indicating that the asymptotic domain structure is

indeed anisotropic. A simple linear analysis about an unstable homogeneous equilibrium of the one

dimensional Cahn-Hilliard equation gives heuristic evidence that most solutions that start with initial

data near such a constant unstable equilibrium state exhibit spinodal decomposition [12].

The case of constant mobility is well investigated and a number of numerical schemes have been

proposed based on both finite difference as well as finite element method [38]. The degenerate mobility

case is more complicated. A nonlinear multi-grid method is a method that was proposed in order to

solve the Cahn-Hilliard equation numerically. The power law

`(t) ∼ t1/3 (1− 1− 3)

has been demonstrated (rigorously), and is known as the Lifshitz-Slyozov law [6]. Moreover it has

been verified by numerical simulations. Algebraic growth laws, such as

`(t) ∼ t1/4,
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can also be associated with surface diffusion dynamics [10]. The Cahn-Hilliard equation has the

associated Lyapunov functional

F [u] =
∫ [

1
4

(u2 − 1)2 +
ε2

2
|∇u|2

]
. (1− 1− 4)

Extending the ideas of Kohn and Otto to obtain specific upper bounds for the limiting coarsening

dynamics is one of the goals of this thesis.

Cahn, Elliott & Novick-Cohen [13] have considered the Cahn-Hilliard equation with mobility which

vanishes in the pure phases u = 0 and u = 1, and which is based on the free energy functional

F =
∫

Ω
f(u) +

ε2

2
|∇u|2 dx (1− 1− 5)

with

f(u) = θg(u)− 1
2
αu2,

and

g(u) = u lnu+ (1− u) ln(1− u) (1− 1− 6)

where θ is temperature and g(u) represents the entropy of the system. For

0 < θ < θcrit,

where θcrit := α, f(u) is a double well potential. By using the time scale τ = ε2t, they showed that

formal asymptotics indicate that the interface moves by minus the surface Laplacian of the mean

curvature. The formal asymptotic analysis is appropriate for the description of the late time behavior

during which the system is dominated by a finite number of regions in which locally energy minimizing

phases prevail.
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Chapter 2

Physical background

2.1 Phase separation

Phase separation can be understood in terms of phase diagrams based on classical thermodynamical

considerations, as developed by Gibbs in 1873 [26]. If a system contains two components which are

in equilibrium, then their chemical potentials are equal, i.e µ1 = µ2. The chemical potential, in other

words, the partial molar Gibbs free energy, assumes a crucial role in determining the equation of state.

The Gibbs free energy satisfies the thermodynamical relation G = H − TS, where H is the enthalpy,

T denotes temperature, and S is the entropy. G can be expanded locally at or near equilibrium in

term of the thermodynamic state variables. The Gibbs chemical potential is given by µ = ∂G
∂N . But in

a closed system at constant temperature and pressure, it is appropriate to work with Helmholtz free

energy rather than with the Gibbs free energy. A similar thermodynamic relation is F = U − TS,

where F is the Helmholtz free energy and U denotes the internal energy. From these thermodynamic

relations we can get that

dF =
∂F

∂p

∣∣∣∣
T

dp+
∂F

∂T

∣∣∣∣
p

dT +
∑ ∂F

∂Ni

∣∣∣∣
p

dN i, (2− 1− 1)

µi =
∂F

∂Ni

∣∣∣∣
p

. (2− 1− 2)

Two decades after Gibbs’ suggestions, Van der Waals in 1893 proposed the functional in (1 − 1 −
4), [19]. This has proved to be a good model for the free energy of binary systems (mixtures). Over

sixty years later Cahn-Hilliard, [1, 2] independently derived this functional which contains a gradient

term and a non-convex integral functional, and which has characteristic singular limits. Cahn and

Hilliard derived from this functional the following equation

∂u

∂t
= 4(−ε24u+ f ′(u)), (x, t) ∈ Ω, (2− 1− 3)

where Ω is a bounded open subset of Rn. This is an evolutionary equation induced by (1 − 1 − 4)

through a generalization of Fick’s law. Linear analysis of equation (2− 1− 3) suggests what we shall
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call Spinodal Decomposition as we shall discuss in the next paragraph.

The quantity

µ = f ′(u)− ε24u

can be identified as the chemical potential, which we have mentioned above, and ε is the length of the

transitional regions between domains during phase separation. Moreover, the Cahn-Hilliard equation

may be written in the form

ut = −∇·J, (2− 1− 4)

which is an equation of continuity which reflects the fact that matter is conserved, and J here denotes

the mass flux (current) which is assumed to be orthogonal to the boundary, J · n = 0. This differs

from the Allen-Cahn equation for phase domain coarsening, which is an evolution equation for a non

conserved order parameter. The mass flux (current) which is orthogonal to the boundary satisfies

J = −M(u)∇[f ′(u)− ε2∇2u], (2− 1− 5)

M(u) is known as the internal diffusion coefficient or the mobility, and M(u) is assumed to be non-

negative, M(u) ≥ 0, [13]. Moreover f(u) is the homogenous contribution to the free energy, and

n · ∇u = 0 on ∂Ω(x, t) where n is an exterior normal to ∂Ω. From (2 − 1 − 4) and (2 − 1 − 5) we

see the Cahn-Hilliard equation which describes the evolution of a conserved concentration during the

phase separation,
∂u

∂t
= ∇·M(u)∇

[
f ′(u)− ε2∇2u

]
. (2− 1− 6)

The Cahn-Hilliard equation can be derived from the free energy functional F,

F [u] =
∫

Ω

(
f(u) + ε2|∇u|2

)
dx. (2− 1− 7)

The first term in (2− 1− 7) is the free energy of a homogenous solution, the second term is a gradient

energy term, and F is taken to be defined on a bounded domain Ω ⊂ Rn, where ∂Ω ⊂ R is assumed

to have a sufficiently smooth boundary ∂Ω, and with suitable boundary conditions prescribed on ∂Ω.

If we assume that

f(u) =
1
4

(u2 − 1)2,

and M(u) = 1, then

ut = ∇2[(u3 − u)− ε2∇2u]. (2− 1− 8)

As we have indicated, phase separation generally occurs when a nearly uniform mixture of a binary

alloy is quenched below a certain critical temperature where the uniform mixture becomes unstable.

Immediately after the quench a micro-structure of two spatially separated phases with different con-

centrations develops. In the later stages of the evolution on a much longer time scale than the initial

stages of separation, the structure becomes coarser, either by merging of particles or by the growth of

bigger particles at the expense of smaller ones [38].
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Phase separation has also been studied for multi-component systems. In particular, the linear

stability of a system of Cahn-Hilliard equation with a concentration dependent mobility matrix has

been studied. By using numerical simulations these equations could be used to see whether or not

phase separation is predicted, as well as the nature of the phase separation. While the phase diagrams

can vary in their levels of complexity, a simplest phase diagram can be prescribed which can already

describe phase separation can be seen in Fig. 2.1, which is taken from A. Novick-Cohen’s paper (1985).

Above the coexistence curve the system is stable, below it phase separation may occur. At critical

temperature and concentration, the system separates into the coexistence concentrations, c1 and c2.

Figure 2.1:

The relaxation to equilibrium in non-isothermal systems is a process which can be characterized

by coupling the Cahn-Hilliard equation with an equation for the temperature field. The resultant

model is known as a conserved phase field model [12]. There are two curves in the phase diagram

seen in Fig 2.1 which help in understanding the phase separation. The outer (upper) curve is known

as the binodal or the coexistence curve, and the inner or lower curve is known as the spinodal. These

two curves intersect at the critical point, (ucrit, θcrit), where ucrit is the critical concentration and θcrit

is the critical temperature. If both the initial point (ũ, θ0) and the final point (ũ, θ1) lie above the

binodal, the mixture is expected to persist in its initially uniform state, i.e. no phase separation is

6



expected to occur and u(x, t) ≡ ũ. This means that the region above the binodal corresponds to a

stable or one phase region, [29]. Thus initiation of phase separation is determined by whether the

initial state (ũ, θ0) is above or below the binodal and spinodal, and whether the final state (ũ, θ1)

is under (below) the binodal, and above or below the spinodal. If (ũ, θ1) lies below the spinodal

curve and u ≈ ucrit, then the phase separation is predicted to take place and to proceed by spinodal

decomposition. During spinodal decomposition, the mixture is distinguished by a certain ”fogginess”

reflecting the simultaneous growth of many perturbations with many different wave lengths. If (ũ, θ1)

lies below the binodal but above the spinodal, phase separation can be expected to occur via nucleation

and growth. In this case, phase separation occurs through the appearance of nuclei, or grains which

persist and grow if they are large enough. In term of existence, the following result may be stated.

Theorem: Let Ω ⊂ R, n ∈ N where ∂Ω ∈ C1,1 or Ω is convex. Suppose that u0 ∈ H1(Ω) and

0 ≤ u0 ≤ 1, Then there exists a pair of functions (u, J) such that

(a) u ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1Ω)) ∩ C([0, T ];L2(Ω)),

(b) ut ∈ L2(0, T ; (H1(Ω))),

(c) u(0) = u0 and ∇u · n = 0 on ∂Ω× (0, T ),

(d) 0 ≤ u ≤ 1 a.e. in ΩT := Ω× (0, T ),

(e) J ∈ L2(Ω,Rn),

and

ut = −∇·J,

in the sense that u for all ζ ∈ L2(0, T ;H1(Ω)),∫ T

0
< ζ(t), ut >H1,(H1)′=

∫
ΩT

J · ∇ζ,

and

J = −M(u)∇(−ε24u+ f ′(u))

in the following weak sense :∫
ΩT

J · η = −
∫
∂ΩT

[ε24u∇ · (M(u)η) + (Mf ′)(u)∇u · η],

for all η ∈ L2(0, T ;H1(Ω)) which fulfill η · n = 0 on ∂Ω × (0, T ). If E(t) is defined as in (2 − 1 − 7),

then for a.e. t1 < t2, where t1, t2 ∈ [0, T ], then

E(t2)− E(t1) ≤ −
∫ t2

t1

1/M(u)|J |2 dx.

The proof of the theorem is based on existence results for a regularized equation, in which the mobility

is given by Mε(u) and the free energy also depends on ε and is given by fε(u), and by establishing

some estimates. For the Cahn-Hilliard equation the mean mass, u = 1
Ω

∫
u(x, t)dx, is time invariant.

The Cahn-Hilliard equation has no maximum principle.
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Because the Cahn-Hilliard equation has a Lyaponov functional, namely the Van der Waals’ free

energy functional, and because this functional is decreasing along non-equilibrium orbits, the system

is dissipative, and solutions can be expected to tend towards time independence as t becomes large,

[23][12], i.e towards a steady state.

To understand thoroughly phase separation, let us consider for the moment the evolution of a

system whose concentration is almost homogenous and spatially uniform which is cooled or quenched

into a region in the thermodynamic phase diagram where the mean concentration is linearly unstable.

Then the phase separation will commence producing a dominant length scale as predicted by the

fastest growing or “most unstable” mode. This mode will be roughly apparent until the system locally

saturates near the equilibrium phases or states. Afterwards, certain of the saturated regions will

grow as others shrink, and the overall length scale of the system will gradually increase. This is the

process called coarsening. Otto & Kohn [3] gave upper bounds on the dominant length scale during the

coarsening, and A. Novick-Cohen & A Shishkov proved [22] a generalization valid for all temperatures.

The process of phase separation in a two component system is accompanied by pattern formation and

evolution. We should like to model the typical scenario of a quick quench by perturbing a uniform

distributional of the two components,

u(x, 0) = u0(x) ≈ u, u ∈ (0, 1).

This is undertaken in the next section.

2.2 Spinodal decomposition

Spinodal decomposition is a process by which a mixture of two or more materials can separate into

distinct regions, with different composition. According to the Principle of Spinodal Decomposition

[12], most solutions to the Cahn-Hilliard equation which start with initial data near a fixed constant

concentrations in the spinodal region, exhibit fine-grained decomposition. Since this conjecture agrees

with the outcome of physical experiment, the Cahn-Hilliard equation has been accepted as a meaning-

ful model and fruitful means for describing the dynamics of phase transition. When a binary mixture

is rapidly quenched to a lower temperature in a physical experiment, the sample which was initially

spatially homogenous becomes inhomogeneous very quickly, decomposing into a fine grained alloy of

particles where two distinct phases can be observed, with a characteristic length scale `(t). This phe-

nomenon is known as spinodal decomposition [12].

To understand how the history of the equation has developed, we note that while Van der Waals

suggested in 1893 that the functional which appears in equation (2-1-6) was a good model for the free

energy of binary mixtures, only sixty years later did Cahn and Hilliard rediscover this functional and

derive the evolution equation induced by (2− 1− 2), through generalization of Fick’s law of diffusion.
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Moreover, they performed a linear analysis of (2− 1− 1) and argued that the results of this analysis

suggested what we shall call the Principle of Spinodal Decomposition. The Cahn-Hilliard equation in

its most familiar form may be written as in equation (2− 1− 6), where

f ′(u) = −u+ u3,

namely as

ut = ∇2(−u+ u3 − ε2∇2u). (2− 2− 1)

The behavior of the evolution of this equation for small perturbations from spatial uniformity can

be expressed by considering initial condition of the form

u0(x) = u+ ũ0(x), (2− 2− 2)

and one can seek solutions of the form u(x, t) = u(x, t) + ũ(x, t). Substitution of these assumptions

into (2− 2− 1) yields

ũt = M0[−ũ+ (u+ ũ)3 − ε2ũxx]xx, (x, t) ∈ ΩT , (2− 2− 3)

where M0 is a constant, and

ũx = M0[−ũ+ (u+ ũ)3 − ε2ũxx]x, (x, t) ∈ ∂ΩT , (2− 2− 4)

ũ0(x, 0) = u+ ũ0(x), x ∈ Ω.

After linearization, we obtain

ũt = −M0(u)[−(1− 3u2)ũ− ε2ũxx]xx, (x, t) ∈ ΩT ,

ũx = −M0(u)[−(1− 3u2)ũ− ε2ũxx]x = 0, (x, t) ∈ ∂ΩT , (2− 2− 5)

ũ(x, 0) = ũ0(x).

By neglecting terms multiplied by ε2, this approximation leads us to the ”diffusion equation” with

Neumann boundary condition

ũt = Dũxx, (x, t) ∈ ΩT , (2− 2− 6)

where D = −M0(1− 3u2), and

ũx(x, t) = 0, (x, t) ∈ ∂ΩT ,

ũ(x, 0) = ũ0(x), x ∈ Ω. (2− 2− 7)

Using the familiar and standard separation of variation method, we get the general solution which

corresponds to the solution of the classical diffusion equation, based on a negative diffusion coefficient.

This equation is also known as the backwards diffusion equation, i.e. the equation obtained from
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the classical diffusion equation via the transformation t → −t. The solution using the method of

separation of variables is based on looking for solutions of the form

u(x, t) = X(x)T (t), (2− 2− 10)

and identifying solutions which are not trivial, i.e. do not equal to zero, which satisfy the given bound-

ary conditions of the system. This technique for such problems generally yields Fourier series or

generalized Fourier series.

Thus the diffusion equation which was originally derived by Adolf Fick in 1855 can be considered

a special case of the Cahn-Hilliard equation. Substituting (2-2-10) into the diffusion equation yields

X(x)T ′(t) = DX ′′(x)T (t) (2− 2− 11)

which implies that

X ′′(x)/X(x) = T ′(t)/DT (t) = −k (2− 2− 12)

Since the RHS and the LHS of the above equation are functions of different independent variables,

this implies that the two sides equal a constant k, and thus

X ′′ + kX = 0. (2− 2− 13)

Equation (2− 2− 7) with the appropriate boundary condition, namely, X ′(0) = X ′(L) = 0, where L

denotes an appropriate place, constitutes a Sturm-Liouville problem, whose solutions can be used in

constructing solutions to (2− 2− 7).

Another way to proceed is by solving the diffusion equation using Green functions. For simplicity let

us consider some one dimensional (1-D) solutions.

Case (i): The heat equation on the whole real line,

ut = Duxx, −∞ < x <∞, 0 < t <∞, (2− 2− 14)

u(x, 0) = g(x), −∞ < x <∞, 0 < t <∞,

u(x, 0) = g(x), −∞ < x <∞,

whose solution is given by

u(x, t) =
1√

4πDt

∫ ∞
0

exp (−(x− y)2/4Dt)g(y) dy. (2− 2− 15)

Case (ii): The heat equation of the half line

ut = Duxx, 0 < x <∞, 0 < t <∞,
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u(0, t) = 0, 0 ≤ t <∞,

u(x, 0) = g(x), 0 ≤ x <∞,

whose solution is given by

u(x, t) =
1√

4πDt

∫ ∞
0

(
exp(−(x− y)2/4Dt)− exp(−(x+ y)2/4Dt)

)
g(y) dy. (2− 2− 16)

Case (iii). The heat equation on the half line with a source term,

ut = Duxx + f(x, t), x ∈ R+, t > 0,

u(x, 0) = 0, x ∈ R+,

u(0, t) = 0, t > 0,

whose solution is given by

u(x, t) =
∫ t

0

∫ ∞
0

1√
4πD(t− s)

(
exp

(
− (x− y)2

4D(t− s)

)
− exp

(
− (x+ y)2

4D(t− s)

))
f(y, s) dy ds.

(2− 2− 17)

Returning to the method of separation of variables, one finds that the solution to (2− 2− 5) can

be written as

ũ(x, t) =
A0

2
+
∞∑
n=1

An exp−
n2π2D
L2 t cos(nπx/L), (2− 2− 18)

where the coefficients An, n = 0, 1, 2..., correspond to the Fourier coefficients of the initial condition,

An =
2
L

∫ L

0
u0(x) cos

(nπx
L

)
dx, (2− 2− 19)

ũ(x, t) |t=0= ũ0(x) =
A0

2
+
∞∑
n=1

An cos(nπx/L). (2− 2− 20)

The solution approaches a constant at long time, n = 0, 1, 2, ...

u(x, t)→ A0

2
as t→∞.

Notice that its amplitude grows without bound, since

‖ũ(x, t)‖2L2[0,L] =
A0

2

2
+
∞∑
n=1

A2
n exp

(
2n2π2Dt

L2

)
. (2− 2− 21)

In particular, for initial data based on a single mode, ũ0(x) = Ak cos(kπx/L),

‖ũ(x, t)‖2L2[0,L] = A2
k exp

(
2k2π2Dt

L2

)
. (2− 2− 15)
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What we may deduce here is that the solution, under the assumption that u(x, t) = ū + ũ(x, t),

does not remain bounded within the interval [0, 1] over time. This is an indication that the higher

order terms proportional to ε2 are necessary in order to get a more realistic physical model which

can describe phase transition more accurately. Moreover, linear and numerical analysis have led to

conjecture that a large class of solutions evolve relatively quickly to become nearly periodic with large

amplitude and relatively small period. Such solutions appear to correspond to the experimentally

observed phenomenon of spinodal decomposition, where the mixture dissociates into different phases

after the alloy is rapidly quenched. The resultant characteristic length scale of the fine grained mixture

grows and develops in size via a process called coarsening.

2.3 Coarsening

The Coarsening phenomenon.

A typical example of coarsening occurs in systems which exhibit phase transitions. During the

late stages, the length scale of the system grows as certain of the regions dominated by one of the

energy minimizing phases grow at the expense of the other. This process is known as coarsening,

and often follows spinodal decomposition. In many technical applications [16], it is important to be

able to predict the coarsening rate. To understand it from a phase separation point of view, let us

consider the evolution of a system which is rapidly cooled or quenched into a region in thermodynamic

phase diagram where the mean concentration is linearly unstable. Initially the fastest growing or most

unstable mode will be apparent, then certain of the saturated regions will grow as others shrink, and

the overall length scale of the system will slowly increase. This is the process known as coarsening,

which we are now going to discuss. In particular we shall explore a new upper bound for `(t), the

characteristic length, recently obtained by A. Novick-Cohen and A. Shishkov [22], which generalizes

the results of Kohn and Otto. We emphasize that when a system is cooled below the critical transition

temperature, interconnected domains of the two equilibrium phases form and grow with time (coarsen)

so as to decrease the total interfacial area. The domain patterns exhibit interesting scaling dynamics

in which the patterns at later times are statistically similar to the earlier patterns apart from a global

change of scale. It is thus natural to focus on how the characteristic length scale `(t) changes with

time, and it turns out that `(t) typically grows as a power of time. This algebraic growth is going to

be explored in this work.

Proving rigorous upper bounds for the coarsening rates has been seen to be a powerful tool in

two standard models of surface-energy-driven interfacial dynamics. The sharp-interface version of

the Cahn-Hilliard equation with constant mobility is the Mullins-Sekerka problem which is associated

originally with solidification. The Mullins-Sekerka problem is a non-local problem in that the motion

of the surfaces cannot be ascertained without taking in consideration the behavior within the entire

domain containing the interfaces [39]. For related literature on Mullins-Sekerka problem, one can read

12



[3, 29]. In the Mullins-Sekerka problem, the domain Ω contains time dependent interfaces γt, and it

can be formulated in the following manner:

4µ = 0, (x, t) ∈ Ω \ γt, (2− 3− 1)

where γt denotes the interfaces, and along the interfaces γt,

V = −[n · ∇(µ)]+−, (2− 3− 2)

where V = V (x, t) denotes the normal velocity at the point (x, t) ∈ γt, and n = n(x, t) denotes the

unit exterior normal to γt, and µ denotes the classical potential,

µ = −κ, (2− 3− 3)

where κ denotes the mean curvature of γt. Along the external boundary of Ω \ γt,

n · ∇µ = 0, x ∈ ∂Ω.

Moreover γt perpendicularly intersects the boundary of ∂Ω, namely γt⊥∂Ω. The chemical potential,

µ = µ(x, t), in the context of the Cahn-Hilliard equation formulation can be identified as

µ = f ′(u)− ε24u, (2− 3− 4)

The Mullins-Sekerka problem and motion by surface diffusion, both preserve volume and decrease

surface energy. The difference between them lies in that the mechanism of rearrangement in the

Mullins-Sekerka corresponds to diffusion through the bulk, while surface diffusion corresponds to

diffusion along the interfacial layer [3].

We are trying in this thesis to extract from [2, 3] precise estimates for free upper bound for coars-

ening for the degenerate Cahn-Hilliard equation in order to predict with high accuracy the algebraical

power law behavior. Usually, coarsening phenomena are the result of phase separation which produced

fine grains composed of two distinct phases. This process is known as spinodal decomposition, and

the system separates into spatial regions rich in one component and poor in the other. After spinodal

decomposition the mixture-alloy is fine grained.

The Cahn-Hilliard equation can also be obtained via Mean Field Theory based primarily on sta-

tistical mechanics, similar to the manner in which one gets the Ising model, when there is no mass

conservation law. In magnetic systems an important quantum mechanical property is the spin direc-

tions. If the spins are parallel to the magnetic field, this is called a ferromagnetic response, while if

they are anti-parallel the system is called paramagnetic. For phase transition based on a conserved

order parameter, for example phase separation of a binary liquid, a growth ”exponent” of n = 1/3 has

been predicted by theory [5, 30], and a growth exponent n = 1/2 has been predicted for systems with

13



a non-conserved order parameter. Phase ordering kinetics is often described by universal growth laws

of the form `(t) ∝ tn where `(t) is the characteristic length.

Another mathematical question which seems interesting is the existence of unique solutions to the

Cahn-Hilliard equation, given smooth initial data. For the degenerate case uniqueness may not hold.

The existence proof relies heavily on the existence of a Lyaponov functional, namely, the free energy

functional, given in (1 − 1 − 5), which acts as a Lyaponov functional that can be expressed in the

following form:

F [u] =
∫
dnx[

1
4

(u2 − 1)2 +
ε

2
|∇u|2] (2− 3− 5)

which satisfies

dF/dt = −
∫
dnx|∇µ|2 ≤ 0. (2− 3− 6)

Notice that the free energy functional contains two terms. The first term is the homogenous free

energy which typically has the form of double well potential

f(u) =
1
4

(u2 − b2)2 (2− 3− 7)

with a constant b ∈ (0, 1). To be more precise, in a mean field model [7], it assumes the form.

f(u) =
θ

2

(
u ln(u) + (1− u) ln(1− u)

)
+ u(1− u) (2− 3− 8)

which gives rise to a double-well potential when θ < 1. Other forms of the free energy are possible, if

0� θ < 1, (2− 3− 8) can be approximated by

f(u) =
1
4
u2(1− u)2,

which has the advantage of being smoothly defined for all u ∈ R.

During the evolution from the initial condition, the domain Ω splits into three different types of

subdomains. Two types of domains, Ω0 and Ω1, are given by points where the solution is close to

the minima of f where the binary mixture is rich in one component and poor in the other, as was

mentioned before. A third type of domain is formed by thin transition layers, where the solution

rapidly changes from being rich in one component to being poor in the other component.

As the interface width goes to zero, the resulting curve moves according to some geometric motion

law [40]. which can be obtained by the method of formal asymptotic expansions via the scaling

t→ ζ2t ε = ζ2, θ = O(εα), α > 0, (2− 3− 9)

For the degenerate Cahn-Hilliard equation in the limit ζ → 0, the interface moves by a geometric

motion law called surface diffusion as mentioned in the previous chapter. Surface diffusion may be
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expressed in terms of the normal velocity V and the mean curvature of the interface, κ, via the

following relations

V = −π
2

16
4sκ (2− 3− 10)

n · ∇sκ = 0, x ∈ γ
⋂
∂Ω. (2− 3− 11)

where 4s is the Laplace-Beltrami operator. This is in contrast to the constant mobility case, where

we get the Mullins-Sekkerka problem when ζ → 0 for rescaling time t→ ζt.

It should also be noted that the integral of the solution of equation (1− 1− 2) is preserved i.e.

d

dt

∫
Ω
udx = 0. (2− 3− 12)

This property of the solution is important for image processing as one of the Cahn-Hilliard equation

applications.

The second term in the free energy functional describes the interfacial energy of the system, and

it is assumed that the parameter, ε2, is positive which implies that spatial gradients are penalized

[7]. The effect of this term is that the total amount of transition zones is accounted for in the energy.

This easily can be be made precise in the limit when the thickness of the interface tends to zero [37].

Since F [u] can be expected to be near to zero, this also indicates segregation into the domains, Ω0,

Ω1 as typical asymptotic outcome of the evolution of this equation. The segregation of such binary

mixtures is characterized by transition layers between the segregated domains with a normal profile

given by the function

ue(x) = tanh
(

x

ε
√

2

)
(2− 3− 13),

where x denotes a locally defined normal coordinate to the interface. From this result it follows that

interfaces have typical width O(ε). Note that the function ue(x) is an equilibrium solution of the Cahn-

Hilliard equation. The dynamics of coarsening is very attractive to study numerically via computer

simulation or by analytical studies. It can be demonstrated at long times that C ≤ EL. This result

can be used to investigate upper bounds.

In general, when there is a phase transition below critical temperature, topological defects can

be noticed at the interface between the two regions (fields). In a very large system, such as to the

Universe in its early stages, topological defects occurred causing spontaneous symmetry breaking.

Modern cosmological theory – the inflationary scenario – infers that magnetic monopoles, cosmic

strings, domain walls and some other textures are direct result of such phase separation or transition.

But in our case, there is no need to consider symmetry breaking since there is no natural ”point space

group”. Hence in fluid mixtures, there is no need to take the topological symmetry in account.

In addition, R. V. Kohn and X. Yau [15] gave a model for coarsening rates for multi-component

phase separation with both constant and degenerate mobility, and for an epitaxial growth model rep-

resented by a PDE equation. A heuristic argument suggests a coarsening rate of t1/3, and R. V. Kohn

& Xiaodong Yau showed that the system can coarsen no faster that t
1
3 .
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Chapter 3

The Cahn-Hilliard equation - basic

properties

3.1 Cahn-Hilliard equation as a mathematical model

The very familiar Cahn-Hilliard equation

ut = 4(−u+ u3 − ε24u), (3− 1− 1)

and the less familiar Cahn-Hilliard equation

ut = ∇·M(u)∇·[θ(lnu− ln(1− u))− αu− ε24u], (3− 1− 2)

can both be written in the following form

ut = ∇·M(u)∇µ, (3− 1− 3a)

µ = f ′(u)− ε24u. (3− 1− 3b)

In both cases, constant and degenerate mobility, it makes sense to impose Neumann boundary condi-

tion, n · ∇u = 0, as well as the boundary conditions, n ·~j = 0, where

~j = M(u)~∇µ(x, t), (3− 1− 4)

which guarantees mass conservation. It is also possible to consider periodic boundary conditions, for

the unknown function u(t, x).

Let us again consider the perturbed Cahn-Hilliard equation as it appeared in (2 − 2 − 4), taking

into consideration the linear part only, and neglecting the non-linear perturbative terms. Additionally

we neglect also terms multiplied by ε2. This yields the following problem, [12]

ũt = −M0(1− 3ū2)ũxx, (x, t) ∈ ΩT , (3− 1− 5)

16



ũx = −M0(1− 3ū2)ũxx = 0, (x, t) ∈ ∂ΩT , (3− 1− 6)

ũ(x, 0) = ũ0(x), x ∈ Ω.

Under the assumption that (3ū2 − 1) < 0, we obtain the classical diffusion equation with Neumann

boundary conditions, which can be written as follows:

ut = kũxx, (x, t) ∈ ΩT , (3− 1− 7)

ũx = 0, (x, t) ∈ ∂ΩT ,

ũ(x, 0) = ũ0(x), x ∈ Ω,

which does not undergo phase separation. And if k = (1−3ū2) > 0, we obtain the backwards diffusion

equation ũt = −kũxx, whose solution we saw in chapter 2. Thus in both cases solving these problem

makes partial physical sense. In the backwards diffusion equation, the higher order terms proportional

to ε2 are necessary in the physical model, and cannot be neglected. This provides a compelling reason

to include such regularizing terms. We recall that such regularizing terms were already added much

before the dynamics for phase separation came under consideration, when equilibrium consideration

lead to the search for a free energy with phase separated steady states possessing certain regularity

and uniqueness properties, notably in the pioneering work by Van der Waals (1873) and Gibbs (1893).

For the Cahn-Hilliard equation, the regularizing terms are necessary in order to guarantee existence,

uniqueness, stability, and bounded solutions in a framework which also guarantees finding numerical

solutions.

3.2 Main results for the C-H equation

Linear Analysis: For Ω = [0, 1], the one dimensional Cahn-Hilliard equation may be written as

ut = −(ε2uxx − f ′(u))xx, x ∈ (0, 1), (3− 2− 1)

ux = uxxx = 0, x ∈ [0, 1].

If the mean concentration ū lies in the spinodal region, then linearizing the equation about u = ū

gives

ut = −ε2uxxxx − β2uxx, x ∈ (0, 1), (3− 2− 2)

where β2 := −f ′(ū) > 0.

The eigenfunctions of

uxx + λu = 0, x ∈ (0, 1),

ux(0) = ux(l) = 0,
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are

cosnπx, n = 0, 1, 2, ....

The growth rate for the Fourier modes cosnπx, n = 0, 1, 2, ...n in the context of (3− 2− 2) is given

by λn where

λn = (nπ)2[β2 − ε2(nπ)2]. (3− 2− 3)

For 0 < n < β/(επ), λn > 0, the corresponding Fourier modes grow as time progresses in the

linearized equation, while the other modes remain steady or shrink. Thus, for ε < βπ, spatially

homogeneous equilbria in the spinodal region are linearly unstable.

3.3 Physical properties dealing with coarsening

As was discussed in the previous chapter, typically coarsening follows spinodal decomposition during

the phase separation process. There is a large class of systems which undergo phase separation for

which one should like to determine their growth exponents. Such systems can contain various topolog-

ical defects such as domain walls, cosmic strings, magnetic monopoles and some textures. In modern

cosmological theory, the inflationary scenario infers that all these objects are direct consequences of

phase separation. Cooled systems produce such objects via nucleation and coarsening, and through

symmetry breaking of the vector or tensor order parameter. Scientists believe that such objects oc-

curred in the early universe, and understand the main steps of the coarsening dynamics that produce

that structures, A. Bray, [5]. Despite this similarity, these phase transitions are unlike the phase

transitions described by Cahn-Hilliard dynamics, as they take place in an extreme ultra high energy

setting.

We shall now define a number of functionals of our motion. Let E(t) denote the free energy of the

functional system which at late times approximates the interfacial area per unit volume, which has the

dimension of 1
length . Similarly let `(t) denotes a suitable negative norm of the order parameter, which

has dimensions of length. It is then possible under appropriate assumptions, to demonstrate E > C

or LE > C, where C is a positive constant. As the system evolves, the interfacial area decreases. This

implies that the energy of the system also decreases, i.e E′ < 0. The following differential inequalities

may be shown to hold:

(L′)2 < C(−E′),

for Mullins -Sekerka problems, and

(L′)2 < C(E(−E′)),

for surface diffusion dynamics, as a consequence of the basic energy-dissipative structure of the dy-

namics. Similar dynamics may be shown to hold for the Cahn-Hilliard equation. Details will be given

in the next chapter.
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3.4 The viscous C-H equation

Viscosity is the property by which fluids demonstrate resistance to flow. It is also well known that

decreasing the temperature of the fluid or cooling it leads to an increase in the value of the viscosity

coefficient. The viscous Cahn-Hilliard equation, A. Novick-Cohen & R. Pego, (1986), may be written

as

(1− α)ut = 4[f ′(u)− ε2∆u+ αut] (3− 4− 1)

where f(u) is a double well potential, α ≥ 0, and Ω is a bounded domain,

Ω ⊂ Rn, n = 1, 2, 3, . . . .

Setting α = 0, the viscous Cahn-Hilliard equation reduces to

ut = 4[f ′(u)− ε24u] (3− 4− 2)

i.e. the classical Cahn-Hilliard equation. Setting α = 1, we obtain

ut = ε2∆u− f(u) +
1
|Ω|

∫
Ω
f(u)dx (3− 4− 3)

which is a nonlocal second order parabolic equation known as the nonlocal reaction diffusion equation.

The same equations can be obtained from the free energy functional by looking at the appropriate

constrained (mass-conserving) gradient flow of the functional. The equation one obtains depends on

the choice of definition of the gradient flow. Gradient flow in the sense of the H−1(Ω) inner product

yields the Cahn-Hilliard equation, while gradient flow in the L2(Ω) inner product leads to the non-local

reaction diffusion equation given above (See C.M. Elliott & A.M. Stuart 1993).

The viscous Cahn-Hilliard equation possesses a global attractor which is compact, connected and

consists of equilibria and orbits connecting them. In one space dimension the equilibria are isolated

[36]. In higher dimension this is not in general the case. For the Cahn-Hilliard equation one knows,

that there exists an inertial manifold [41] and inertial sets. By definition, the inertial manifold and

inertial sets are finite dimensional, exponentially attracting, and contain the global attractor. As far

as dependence of the attractors on α and ū, the mean mass is concerned, denoting by Aūα the attractor

of the viscous Cahn-Hilliard equation in one space dimension for a given value of ū and a given interval

Ω = [0, 1], where the dependence of the global attractors resulting from the mass constraint has been

indicated explicitly, the following result may be stated.

Theorem : The sets Aūα are Hausdorff continuous with respect to α and ū at α = 1 for ū ∈ [−1, 1].

The proof may be found in M. Grinfeld, A. Novick-Cohen, [42].

For the non-local reaction-diffusion equation, we also have the following result (see [3]).

Lemma : If u(x, t) is a solution of non-local reaction-diffusion equation, then its lap number is

non-increasing with time.
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3.5 The convective Cahn-Hilliard equation

The convective Cahn-Hilliard equation has been proposed to describe the evolution of crystal surfaces

which are unstable due the anisotropy of the surface tension along the surface of the crystal during its

growth stage. This ”convective Cahn-Hilliard model” [20] is based on various physical assumptions,

such as that the local normal velocity is a linear function of the local under-cooling:

vn = µ−1(θe − θi),

where θe denotes the equilibrium temperature, and θi denotes local surface temperature. During the

growth process the crystal surface tension affects the growth rate via its effect on the equilibrium

temperature θe, which depends on the surface tension γ, via the local Gibbs-Thomson relation,

θe = θm(1−GK/H).

Here H denotes the latent heat, K is the mean curvature, which has been defined so that for a convex

crystal surface, K > 0, and G := γ + ∂2γ/∂β2 is the surface stiffness, where γ is the normal, and β

represents the angle between the normal and the curve. Thus, in the convective Cahn-Hilliard model

both kinetic and thermodynamics effects are taken in consideration, as well as the effect of surface

tension on the formation of crystal face growth. If G < 0, disturbances of the crystal surface lead to

the energy decrease. Although the increase of the surface area gives a positive contribution to the

surface energy, at the same time part of the surface may fragment yielding new direction with lower

energy.

There are various physical phenomena which can be described by the convective Cahn-Hilliard model,

such as phase transition in the presence of an external field [21]. If the growth driving force σ

goes to 0, where σ denotes the surface energy, σ := E(u+) − E(u−), then spinodal decomposition

occurs in phase-separating system [2, 3] and coarsening dynamics are exhibited [26]. On the other

hand, the growth of the driving force causes a transition from coarsening dynamics to a chaotic

spatiotemporal behavior. If the driving force goes to infinity, one expects the evolution to be governed

by the Kuramoto-Sivashinsky equation [27] which is somewhat similar to the Cahn-Hilliard equation.

3.6 Turbulent coupling of C-H with the Navier-Stokes equation

Taking into account the presence of hydrodynamic velocity fields such as occur in fluids can make the

behavior of phase separation and coarsening during the final stages even more complicated than the

corresponding process which occurs in solid alloys [12]. In fluid dynamics, turbulence or turbulence

flow is a flow regime characterized by chaotic changes. Hydrodynamics can accelerate domain growth

[14, 15]. The complexity of the motion is due to the large number of degrees of freedom and to

the possible chaotic behavior of some of them. It will be more difficult to comprehend than if the
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system had only two or three degrees of freedom. Nevertheless, turbulence and coarsening have been

extensively investigated in shear flows [17], where coarsening becomes highly anisotropic, and in which

the single-phase domain growth accelerates in the shear direction, while in the transversal direction

the growth is arrested [18] or strongly slowed down, and the phase separation may be suppressed

[14]. Numerical experiments show that coarsening arrest is a generic and robust phenomenon. In

phase separation produced by continuous stirring, [15], the main issue is the competition between the

thermodynamic forces, which drive the phase separation, and the fluid motion which tends to lead

to mixing and domain break-up. For very high flow intensities, phase separation can be completely

suppressed, due to the mixing of the components and inhibition of interface formation. In active

mixtures with very low viscosities, such phenomena may be self-induced by feedback [19], the fluid

responds vigorously to local chemical potential variations and the components may again be mixed.

In some cases stirring may decrease and lower the critical temperature [20] producing a deeper quench,

and phase separation in a nontrivial statistically stationary state may continue to evolve.

21



Chapter 4

Energy estimates for coarsening

4.1 Obtaining estimates for global energy minimum.

We wish to identify upper bounds for coarsening for the degenerate Cahn-Hilliard equation based on

the results on the paper of A. Novick-Cohen & A. Shishkov, [22]. Under appropriate assumptions, we

have the following result: For all θ ∈ [0, 1],

1
|Ω|

∫
Ω

(u2
± − u2) dx ≤ 2E + 2θ ln 2 (4− 1− 1)

where E is defined by

E(t) :=
1

2|Ω|

∫
Ω

[
|∇u|2 +

[
∂W

∂u

]2]
dx. (4− 1− 2)

Let us now replace E by E = Enew + Emin in (4 − 1 − 1), where Emin corresponds to the minimum

attainable value of E for some given value of ū and θ. i.e. Emin = Emin(ū, θ). Then

1
|Ω|

∫
(u2
± − u2) dx ≤ 2(Enew + Emin) + 2θ ln 2, (4− 1− 3)

which implies that
1
|Ω|

∫
u2
± dx−

1
|Ω|

∫
u2 − 2Emin ≤ 2Enew + 2θ ln 2. (4− 1− 4)

The inequality (4 − 1 − 4) can be seen as being more precise than (4 − 1 − 1), since min Emin = 0,

whereas min E = Emin.

4.2 Upper bound for coarsening

Kohn and Otto [3] obtained rigorous results on upper bounds for coarsening for the Cahn-Hilliard

equation with constant mobility [11], and for the degenerate mobility Cahn-Hilliard equation, [22].

Periodic boundary conditions were assumed and the mean mass, u was taken to be 1/2. They demon-

strated upper bounds for the dominant length scale during coarsening. More precisely they proved
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that there exist constants Cα such that if L3+α � 1� E0 and T � L3+α, where E denotes a scaled

free energy and L is a W 1,∞ predual norm of u, then

1
T

∫ T

0
EϕrL−(1−ϕ)rdt ≥ CαT−r/(3+α) (4− 1− 5)

for all (r, ϕ), such that 0 ≤ ϕ ≤ 1, r < 3 + α, ϕ · r > 1 + α, (1 − ϕ)r < 2. Their results are

based on three lemmas [22, 29], which should hold at long times when the system has sufficiently

coarsened, [3]. The first lemma gives a bound of the form d ≤ EL where d is O(1), the second lemma

gives a differential inequality involving E and L, and the third lemma uses the results of the first two

lemmas to obtain upper bounds. In fact, upper bounds for coarsening have been shown to hold for

all temperatures θ ∈ (0, θc), [22], within the context of the Cahn-Hilliard equation with degenerate

mobility,

(CH)


ut = ∇ · (1− u2)∇

[
θ
2 ln

[
1+u
1−u

]
− u−4u

]
, (x, t) ∈ ΩT ,

n · ∇u = 0, (x, t) ∈ ∂ΩT ,

n · (1− u2)∇
[
θ
2 ln

[
1+u
1−u

]
− u−4u

]
= 0, (x, t) ∈ ∂ΩT ,

u(x, 0) = u0(x), x ∈ Ω.

Our goal in this section is to reconstruct the upper bounds for Cahn-Hilliard equation based on the

three basic lemmas which were demonstrated in [22] and which generalize the three lemmas which

appear in [3]. We now state these three lemmas below which shall be used in the sequel.

The calculation of the upper bounds could be reconstructed by using the three following lemmas:

Lemma 1. Assuming that 0 < θ < 1 and u− < u < u+, then for any t ≥ 0,

1 ≤ A+ min (B1, B2), (4− 1− 6)

where

A =
25/2

(u2
± − u2)

[(
5/u+

[θ(1
6 + hmin )]1/2

E(t) + 3
|∂Ω|
|Ω|

)
L(t)

]1/2

,

B1 =
1

(u2
± − u2)

[
2E(t)

θ(1
6 + hmin )

]1/2

, B2 =
2

(u2
± − u2)

[E(t) + θ ln 2].

For a full proof of this lemma see [22].

Lemma 2. If u(x, t) is a solution of Cahn-Hilliard equation , 0 < θ < 1 and |u| < 1, then the following

estimates hold for t ≥ 0,

|L̇|2 ≤ −(1− u2
±)Ė −

[
2

θ(1/6 + hmin)

]1/2

E1/2Ė, (4− 1− 7a)

|L̇|2 ≤ −[(1− u2
±) + 2θ ln 2]Ė − 2EĖ. (4− 1− 7b)
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Lemma 3. Suppose that

|L̇|2 ≤ −AEαĖ, 0 ≤ t ≤ T, α = 0, 1/2, or 1.

i) If, moreover, LE ≥ B, for 0 ≤ t ≤ T, then

1
T

[∫ T

0
EϕrL−(1−ϕ)rdt+ L(0)(3+α)−r

]
≥ ϑ1T

− r
3+α . (4− 1− 8)

ii) If, moreover, E ≥ C, for 0 ≤ t ≤ T, then

1
T

[∫ T

0
EϕrL−(1−ϕ)rdt+ L(0)2−(1−ϕ)r

]
≥ ϑ2T

− (1−ϕ)r
2 . (4− 1− 9)

where

ϑ1 = ϑ1(A,B, α, r, ϕ),

ϑ2 = ϑ2(A,B, α, r, ϕ).

From these three lemmas it is possible to predict upper bounds for coarsening. We proceed by

identifying min(B1, B2), and determining which inequality gives the tighter bounds in Lemmas 1 and

2. We neglect boundary contribution for simplicity. Suppose that B1 = min(B1, B2). If B1 < 1/2,

then Lemma 1 implies a bound of the form EL ≥ B, and if B1 > 1/2, a bound of the form E ≥ C, is

predicted. If moreover,

(u2
± − ū3)B1 < (1− u2

±)2, (4− 1− 10)

then Lemma 2 provides an estimate of the form with α = 0, and if (4−1−10) holds with the opposite

sign, an estimate is obtained with α = 1/2. Suppose that B2 = min(B2, B2). If B2 < 1/2, Lemma 1

implies a bound of the form EL ≥ B, and if B2 > 1/2, a bound of the form E ≥ C is obtained. If

2E < (1− u2
±) + 2θ ln 2, (4− 1− 11)

an estimate is obtained with α = 0, and if (4 − 1 − 11) holds with the other sign, an estimate with

α = 1 is obtained.

The inequalities in Lemma 2 may be considered as generalizations of the inequalities obtained in

[3], namely

(L̇2) . −Ė, in the constant mobility case,

and

(L̇2) . E(−Ė), in the degenerate mobility case.
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4.3 Energy levels

We now define a set of energy levels,

E11 =
1
8
u4
±Ψ(1− β2)2,

E12 =
1
2

Ψ(1− u2
±),

E21 =
u2
±
4

(1− β2)− θ ln 2,

E22 =
1
2

(1− u2
±) + θ ln 2,

E± =

[
1− (4 ln 2)θΨ±

√
1− (8 ln 2)θΨ

]
4Ψ

,

where

Ψ := θ

[
1
6

+ hmin

]
,

and

β2 := u2/u2
± < 1.

These energy levels determines which inequalities hold in Lemmas 1 and 2, and can be used to conclude

various upper bounds.

We may now estimate these various energy levels at a number of different parameter limits.

Let us suppose that we are near the deep quench limit. Then we may set u+ = 1 − δ, with

0 < δ � 1. Proceeding in this manner, we find that

θ =
−2
ln δ

(1− δ) +O
[
(ln δ)−2

]
,

Ψ =
(1 + δ)
(1− δ)

3

+O(ln[δ]−1),

E− = 8
(1 + δ)
(1− δ)

[ ln 2
ln δ

]2
+O([ln δ]−3),

E+ =
1
2

(1− 4δ +O(δ2)),

E11 =
[1

8
+O(δ)

]−3
(1− β2)2,

E12 = 2δ2 +O(δ3),

E21 =
(1− δ)2

4
(1− β2) +O[ln δ]−1,

E22 = δ +O(δ2).
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Under the assumption that 1− β2 = O(1), we obtain [22]

0 < E− < E12 < E22 < E11 < E12 < E+.

Suppose now that we are just below the critical temperature, in the proximity of the shallow

quench limit. Then 0 < 1− θ � 1 and 0 < u+ � 1, which implies that

E21 < 0 < E11 < E12 < E− < E22 < E+,

since

E± =
3
2
− ln 2± 3

2

√
1− 4

3
ln 2 +O(u2

±),

E11 =

(
1
48
u4
± +O(u6

±)

)
(1− β2)2,

E12 =
1
12

+O(u2
±),

E21 = − ln 2 +O(u2
±),

E22 = (
1
2

+ ln 2) +O(u2
±).

A numerical analysis of these energy levels has been undertaken by A. Novick-Cohen, M. Gruzd,

J. Rashed, A. Shishkov, [32], which yields new results for the coarsening upper bounds for the Cahn-

Hilliard equation, and show the influence of the temperature and concentration dependence. The

graphs Figs. 4.1-4.5 show energy versus concentration u± = u±(θ) at various different magnifications.

In these graphs, u+ is denoted by ”u” and energy bounds E±, E11, E12, E21, E22 are portrayed. Upper

bounds based on EL ≥ B are indicated as `(t) ∝ tα, and upper bounds based on E ≥ C are indicated

as `(t) ∝ tα+. The graphs also show how the behavior of the upper bounds can be sensitive to small

changes in u± near the deep quench limit.

4.4 Some numerical results.

An approach to solve the Cahn-Hilliard equation numerically is to build an appropriate scheme which

is based on finite element methods. Another approach is via finite difference method. Another method

which can be used is the method of lines which yields an ”ODE” system, [7]. Studies for the Cahn-

Hilliard equation have done by H.Garcke et al., [37] who included the effects of elasticity in their

computations and made use of finite element methods.

Numerical studies of Cahn-Hilliard equation with applications to image processing have been done

by Vladimir Chalupecky [7]. In his, one can see the evolution of an initial shape with r ”leaves,”

the boundary of which has been damaged by small bumps. The small bumps at the boundary are

smoothed out quickly while the overall four-leaf shape almost does not change. Even after a long time,
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the final shape does not differ much from the original one. In the letter ”R,” a similar effect takes

place, see Fig. 4.6. The only difference is the amount of noise apparent in the boundary. Even though

the boundary is now quite damaged, after a short time we get results which may be more suitable for

further processing.

Figure 4.1:
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Figure 4.2:
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Figure 4.3:
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Figure 4.4:
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Figure 4.5:
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Figure 4.6: Shape recovery
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