EVERY PROJECTIVE SCHUR ALGEBRA IS BRAUER EQUIVALENT TO A RADICAL ABELIAN ALGEBRA

ELI ALJADEFF AND ÁNGEL DEL RÍO

ABSTRACT

We prove that any projective Schur algebra over a field K is equivalent in $\text{Br}(K)$ to a radical abelian algebra. This was conjectured in 1995 by Sonn and the first author of this paper. As a consequence, we obtain a characterization of the projective Schur group by means of Galois cohomology. The conjecture was known for algebras over fields of positive characteristic. In characteristic zero the conjecture was known for algebras over fields with a Henselian valuation over a local or global field of characteristic zero.

1. Introduction

One of the main theorems on the Schur subgroup of the Brauer group is the Brauer–Witt theorem.

THEOREM (Brauer–Witt). Every Schur algebra is Brauer equivalent to a cyclotomic algebra.

Recall that a (finite-dimensional) central simple K-algebra A is called a Schur algebra if it is spanned over K by a finite group of unit elements. Equivalently, A is a Schur algebra if it is the homomorphic image of a group algebra KG for some finite group G. The subgroup of $\text{Br}(K)$ generated by (in fact consisting of) classes that are represented by Schur algebras is called the Schur group of K and is denoted by $S(K)$; see [14]. There is a natural way to construct Schur algebras, namely the cyclotomic algebras. A cyclotomic algebra over K is a crossed product $A = (L/K, \alpha)$ where $L = K(\zeta)/K$ is a cyclotomic field extension and $\alpha \in H^2(\text{Gal}(L/K), L^\times)$ is represented by a 2-cocycle t with values that are roots of unity. Clearly, if $A = \bigoplus_{\sigma \in \text{Gal}(L/K)} L u_\sigma$ where $u_\sigma u_\tau = t(\sigma, \tau) u_{\sigma \tau}$, then the group of units generated by ζ and the u_σ is finite and spans A as a vector space over K. Hence A is a Schur algebra. The Brauer–Witt theorem states that this natural construction is applicable for all the Schur algebras up to Brauer equivalence.

Using the Brauer–Witt theorem, one can characterize the Schur group by means of Galois cohomology. Let K_s be a separable closure of K, and let K_{cyc} be the maximal cyclotomic extension of K (contained in K_s). Denote by $G_s = \text{Gal}(K_s/K)$ and $G_{\text{cyc}} = \text{Gal}(K_{\text{cyc}}/K)$ the corresponding Galois groups. Let μ denote the group of roots of unity in K_{cyc} viewed as a G_{cyc}-module. Consider the following diagram, where i_* is the map induced by the inclusion $i : \mu \hookrightarrow K_{\text{cyc}}^\times$.

$$
\begin{array}{ccc}
H^2(G_{\text{cyc}}, \mu) & \xrightarrow{i_*} & H^2(G_{\text{cyc}}, K_{\text{cyc}}^\times) \\
\phi_{\text{cyc}} \downarrow & & \downarrow \phi \\
\text{Br}(K_{\text{cyc}}/K) & \hookrightarrow & \text{Br}(K)
\end{array}
$$

Received 26 August 2006; published online 22 August 2007.

2000 Mathematics Subject Classification 20C25, 16K50.

This research was carried while the first author was visiting the University of Murcia during the spring semester of 2005/6. He thanks the Department of Mathematics for the hospitality and Fundación Séneca of Murcia for their financial support. The second author has been partially supported by D.G.I. of Spain and Fundación Séneca of Murcia.
COROLLARY. \(\phi_{\text{cyc}}(\text{Im } i_s) = S(K) \).

In 1978, projective analogues of these constructions were introduced by Lorenz and Opolka [9]. Recall that a central simple \(K \)-algebra \(A \) is called projective Schur if it is spanned by a group of units that is finite modulo its centre. Equivalently, \(A \) is projective Schur if it is the homomorphic image of a twisted group algebra \(K^tG \) for some finite group \(G \) and 2-cocycle \(t \).

As in the Schur case, the classes of \(\text{Br}(K) \) represented by projective Schur algebras form a group. This is the projective Schur group of \(K \), and is denoted by \(\text{PS}(K) \). One of the main reasons for introducing these notions is that every symbol algebra is projective Schur in an obvious way. This observation already shows that the projective Schur group is large if roots of units are present [10]. Indeed, the Merkurjev–Suslin theorem implies that if \(K \) contains all roots of unity, then \(\text{PS}(K) = \text{Br}(K) \). Interestingly, as observed by Lorenz and Opolka, for fields which have only few roots of unity, the projective Schur group may also be large. They showed that if \(K \) is a local or global field then \(\text{PS}(K) = \text{Br}(K) \); see [9]. Based on these examples it was conjectured that \(\text{PS}(K) = \text{Br}(K) \) for arbitrary fields, but this turned out to be false, as shown in [2] (for example, \(K = k(x) \), \(k \) any number field).

The main objective was then to find a description of \(\text{PS}(K) \) in terms of Galois cohomology. As in the Schur case, also here there is a natural way to construct projective Schur algebras. These are the radical or radical abelian algebras. Before we recall their definition, let us introduce the following notation: given any field extension \(L/K \), we denote by \(\text{Rad}_K(L) \) the group of all units in \(L \) which are of finite order modulo \(K^\times \). A field extension \(L/K \) is said to be radical if \(L = K(\text{Rad}_K(L)) \). (Note that this definition is more restrictive than the usual definition of radical extension in Galois Theory.) Now, a central simple \(K \)-algebra is radical if it is a crossed product \(A = (L/K, \alpha) \) where \(L/K \) is a Galois radical extension and \(\alpha \in \text{Rad}_K(L) \). By this we mean that the cohomology class \(\alpha \) may be represented by a 2-cocycle \(t \) with \(t(g, h) \in \text{Rad}_K(L) \) for every \(g, h \in \text{Gal}(L/K) \). If the extension \(L/K \) is abelian, we say that \(A \) is radical abelian. Clearly, if \(\{u_g : g \in \text{Gal}(L/K)\} \) is an \(L \)-basis with \(u_gu_h = t(g, h)u_{gh} \) (and with \(t \) as above), then the multiplicative group \(\langle \text{Rad}_K(L), u_g : g \in \text{Gal}(L/K) \rangle \) contains a subgroup that spans \(A \) as a vector space over \(K \) and is finite modulo its centre (see, for example, [2]). Hence, every radical algebra is projective Schur.

The ‘Brauer–Witt conjecture’ for projective Schur algebras says that every projective Schur algebra is Brauer equivalent to a radical (abelian) algebra (see [1]). In [3] the conjecture was proved for fields of positive characteristic. In characteristic zero, the conjecture was established for Henselian-valued fields whose residue field is a local or global field of characteristic zero (for example, iterated Laurent series over a number field); see [4].

As the title suggests, the goal of this paper is to prove the Brauer–Witt conjecture for projective Schur algebras over arbitrary fields of characteristic 0.

Theorem 1. Every projective Schur algebra is Brauer equivalent to a radical abelian algebra.

As a consequence, we obtain a cohomological interpretation of \(\text{PS}(K) \). Consider the following commutative diagram:

\[
H^2(\text{G}_{\text{rad}, ab}(\text{Rad}_K(\text{K}_{\text{rad}, ab}))), j_s \rightarrow H^2(\text{G}_{\text{rad}, ab}(\text{K}_{\text{rad}, ab}^\times)) \quad \cong \quad H^2(\text{G}_{K}, \text{K}_{s}) \quad \downarrow \ell \\
\phi_{\text{rad}, ab} \downarrow l \\
\text{Br}(\text{K}_{\text{rad}, ab}/K) \quad \cong \quad \text{Br}(K)
\]

where \(K_{\text{rad}, ab} \) is the maximal radical abelian extension of \(K \) (in \(K_s \)), \(G_{\text{rad}, ab} = \text{Gal}(K_{\text{rad}, ab}/K) \) is its Galois group over \(K \), and \(j_s \) is the map induced by the inclusion \(j : \text{Rad}_K(\text{K}_{\text{rad}, ab}) \hookrightarrow K_{\text{rad}, ab}^\times \).
The proof of Theorem 1 uses the idea of the proof of the Brauer–Witt theorem as it appears in [14]. The main difficulty here comes from a fundamental difference between cyclotomic and radical algebras. While being a root of unity is a notion which is independent of the field considered, being radical depends on the ground field. This obstruction appears in the use of the corestriction map. To overcome this difficulty, it is convenient to generalize the notions of projective Schur algebras and radical algebras.

Let K/k be a field extension, and A a central simple K-algebra. We say that A is projective Schur over k if it is an epimorphic image of a twisted group algebra k^G of a finite group G. Equivalently, A is projective Schur over k if it is generated over k by a group of units Γ which is finite modulo k^\times (that is, $[\Gamma : \Gamma \cap k^\times] < \infty$). We denote such an algebra by $k(\Gamma)$. We say that A is radical over k if A is a crossed product $(L/K, \alpha)$ where L/k is a (non-necessarily Galois) radical extension and $\alpha \in \text{Rad}_k(L)$.

Clearly, an algebra A which is radical over k is projective Schur over k in a natural way. In the theorem below, we show that the generating group Γ that appears in this way is supersolvable. In fact, the class of supersolvable groups is precisely the class of groups needed to represent radical algebras.

Theorem 3. Let K/k be a field extension and A a central simple K-algebra.

(a) If A is radical over k, then A is generated by a supersolvable group of units which is finite modulo k^\times.

(b) If A is generated by a supersolvable group of units which is finite modulo k^\times, then A is isomorphic to a full matrix algebra over an algebra which is radical abelian over k.

Theorem 3 is proved in Section 2. Note that Theorem 3(b) implies Theorem 1 for projective Schur algebras $k(\Gamma)$ with Γ supersolvable. The main task is then to show that every projective Schur algebra is equivalent to a projective Schur algebra which is generated by a supersolvable group. For fields of characteristic zero, this is contained in the next theorem. It implies Theorem 1 for fields of characteristic zero. (For fields of positive characteristic, Theorem 1 is proved in [3].)

Theorem 4. Let K/k be an extension of fields of characteristic 0, and let A be a central simple K-algebra. Then the following conditions are equivalent.

1. A is equivalent (in $\text{Br}(K)$) to a central simple K-algebra which is projective Schur over k.

2. A is equivalent to a central simple K-algebra generated by a supersolvable group of units which is finite modulo k^\times (that is, equivalent to an epimorphic image of a twisted group algebra k^G for G a finite supersolvable group).

3. A is equivalent to a central simple K-algebra which is radical over k.

4. A is equivalent to a central simple K-algebra which is radical abelian over k.

Implications (1) \iff (2) \iff (3) \iff (4) either are obvious or follow from Theorem 3 (note that Brauer equivalence is basically not needed for these implications). To complete the proof of Theorem 4 we prove that (1) \implies (3). An important part of this proof is contained in Proposition 7, which uses character theory of projective representation.
In this section we prove Theorem 3.

Proof of Theorem 3(a). Let
\[A = (L/K, \alpha = [t]) = \oplus_{\sigma \in G} Lu_\sigma \]
be radical over \(k \) with \(G = \text{Gal}(L/K) \). Let \(L = k(s_1, \ldots, s_k) \) with each \(s_i \) finite modulo \(k^\times \).

One may assume that \(t(\sigma, \tau) \in \langle s_1, \ldots, s_n \rangle \) for each \(\sigma, \tau \in G \).

Let \(E_0 \) be a maximal cyclotomic extension of \(K \) contained in \(L \). For each \(i = 1, \ldots, k \), let \(n_i \) be the order of \(s_i \) modulo \(E_0^\times \), and let \(m_i \) be the degree of the minimal polynomial \(p_i \) of \(s_i \) over \(E_0 \).

Every conjugate of \(s_i \) over \(E_0 \) is of the form \(s_i \zeta \) for some root of unity \(\zeta \) in \(L \), and thus the coefficient of degree 0 of \(p_i \) is \(s_i^{m_i} \zeta \) for some root of unity \(\zeta \in L \). By the maximality of \(E_0 \), \(\gamma \) and each \(\zeta \) belong to \(E_0 \). Thus \(s_i^{m_i} \in E_0 \) and therefore \(m_i \geq n_i \).

This implies that \(p_i = X^{m_i} - s_i^{m_i} \), and so \(E_0 \) contains a primitive \(n_i \)th root of unity. This shows that \(L/E_0 \) is a Kummer extension, and that \(E_0 \) contains a primitive \(n \)th root of unity \(\xi \), where \(n \) is the least common multiple of the values of \(n_i \).

Let \(\Gamma \) be the subgroup of the group of units of \(A \) generated by \(\xi \), the \(s_i \) and the \(u_\sigma \). Clearly, \(A \) is generated by \(\Gamma \) over \(k \) and \([\Gamma : \Gamma \cap k^\times] < \infty \). We show that \(\Gamma \) is supersolvable. Clearly, \(C_1 = \langle \xi \rangle \) is a cyclic normal subgroup of \(\Gamma \). Let \(C_2 = \langle \xi, s_1, \ldots, s_n \rangle \). By the construction of \(\xi \), it follows that \(C_2/C_1 \) is central in \(\Gamma/C_1 \). Since \(t(\sigma, \tau) \in \langle s_1, \ldots, s_n \rangle \subseteq C_2 \) for each \(\sigma, \tau \in G \), one has \(\Gamma/C_2 \cong G \), and so it is enough to show that \(G \) is supersolvable. Since \(L/E_0 \) is a Kummer extension, \(E_0(s_i)/E_0 \) is cyclic for every \(i \). Moreover, by the definition of \(E_0 \), \(E_i = E_0(s_1, \ldots, s_i)/K \) is Galois and hence \(H_i = \text{Gal}(L/E_i) \) is normal in \(G \). Consider the composition series
\[G \triangleright H_0 \triangleright H_1 \triangleright H_2 \triangleright \ldots \triangleright H_{n-1} \triangleright H_n = 1. \]

Since \(G/H_0 \) is abelian, we need only to show that \(H_i/H_{i+1} \) is cyclic for \(0 \leq i \leq n - 1 \). But \(H_i/H_{i+1} \cong \text{Gal}(E_{i+1}/E_i) = \text{Gal}(E_i(s_i+1)/E_i) \) is an epimorphic image of \(\text{Gal}(E_0(s_i+1)/E_0) \) which is cyclic.

To prove Theorem 3(b), we need the following lemma (see also [1]).

Lemma 5. Let \(A = k(\Gamma) \) be a central simple \(K \)-algebra which is projective Schur over \(k \), and let \(\Delta \) be a normal subgroup of \(\Gamma \). Then \(B = k(\Delta) \) is semisimple. Moreover, if \(B \) has \(n \) simple components, then \(A \) is isomorphic to \(M_n(C) \) for some algebra \(C \) which is projective Schur over \(k \). In fact, \(C \) is spanned over \(k \) by an epimorphic image of \(\Gamma \).

Proof. Let \(G = \Gamma k^\times/k^\times \), and let \(\alpha \in H^2(G, k^\times) \) be the cohomology class associated to the central extension \(1 \rightarrow k^\times \rightarrow \Gamma k^\times \rightarrow G \rightarrow 1 \). Then \(A \cong k^\alpha G/I \) for some maximal ideal \(I \) of \(k^\alpha G \). Furthermore, putting \(N = \Delta k^\times/k^\times \) and \(\beta \) the restriction of \(\alpha \) to \(N \), we have \(B \cong k^\beta G/I \cong k^\beta N/(k^\beta N \cap I) \). Thus \(J(k^\beta N) \subseteq J(k^\alpha G) \subseteq I \) (see [11, Theorem 4.2] or [13, Corollary 2.5.30]), and hence \(B \) is semisimple.

Let \(e \) be a primitive central idempotent of \(B \) and \(\{\sigma_1, \ldots, \sigma_m\} \) a right transversal of the centralizer of \(e \) in \(\Gamma \). Set \(e_i = \sigma_i^{-1} e \sigma_i \) for each \(i \). Since \(\Delta \) is normal in \(\Gamma \), the elements \(e_1, \ldots, e_m \) are different primitive central idempotents of \(B \), and hence \(\sum_{i=1}^m e_i \) is a non-zero central idempotent of \(A \). Thus \(\sum_{i=1}^m e_i = 1 \) since \(A \) is simple. It follows that \(B \) has \(m \) simple components, and so \(m = n \).

Now, for every \(g \in \Gamma \), the map \(A e \rightarrow A g^{-1} e g = A e g \) given by \(x \mapsto x g \) is an isomorphism of left \(A \)-modules. Consequently, \(A \cong (A e)^n \) as left \(A \)-modules and hence \(A \cong \text{End}_A(A) = M_n(\text{End}(A e)) = M_n(e A e) \). Finally, \(e A e \) is an epimorphic image of \(\Gamma \) is projective Schur over \(k \), and the result follows.

\[\square \]
Proof of Theorem 3(b). Let $A = k(\Gamma)$ be projective Schur over k with Γ supersolvable. By Lemma 5, we may assume that $k(\Delta)$ is simple for every normal subgroup Δ of Γ. In particular, $k(\Delta)$ is a field if Δ is abelian.

We claim that Γ', the commutator subgroup of Γ, is cyclic. Since Γ is central-by-finite, by a Theorem of Schur, Γ' is finite (see, for example, [5, Chapter IV, Section 3, Exercise 4(b)]), and so there is a subgroup C of Γ which is maximal among the cyclic normal subgroups of Γ contained in Γ'. Let us show that $\Gamma' = C$. If not, since Γ is supersolvable, there is $a \in \Gamma' \setminus C$ such that $D = \langle C, a \rangle$ is normal in Γ. Furthermore, since $\text{Aut}(C)$ is abelian, Γ' centralizes C and hence D is abelian. It follows that $k(D)$ is a field, and therefore D must be cyclic. This contradicts the maximality of C, and the claim is proved.

Let Δ be a maximal abelian subgroup of Γ which contains Γ'. Clearly, Δ is normal in Γ and $G = \Gamma/\Delta$ is finite abelian. Moreover, by the maximality of Δ, G acts faithfully on the field $L = k(\Delta)$. We find that $A \cong \langle L/K, \alpha \rangle$ where K is the field of G-invariant elements of L and α is the cohomology class associated to the group extension $1 \rightarrow \Delta \rightarrow \Gamma \rightarrow G \rightarrow 1$. It is clear that L/k is a radical field extension and $\alpha \in \text{Rad}_k(L)$. Moreover, $G \cong \text{Gal}(L/K)$ is abelian, and therefore A is radical abelian over k.

3. The general case

In this section we complete the proof of Theorem 4 by proving that $(1) \implies (3)$. Note that Theorem 3(b) implies that $(1) \implies (3)$ for projective Schur algebras $k(\Gamma)$ with Γ supersolvable. In Proposition 7 below, we reduce the general case to the supersolvable case, however not over the ‘right’ field. Then a suitable application of the corestriction map gives us the desired result. It is here, in this very last step of the proof, where we need the notion introduced above, namely of a central simple K-algebra which is radical over k.

Recall that a semisimple K-algebra is split if it is isomorphic to a direct product of matrix algebras over K. If F/K is a field extension and A is a semisimple K-algebra then we say that F splits A (or F is a splitting field of A) if $F \otimes_K A$ is a split F-algebra. The next lemma is basically known.

Lemma 6. Given a twisted group algebra k^tG, there exists a Galois radical extension L/k which splits k^tH for every subgroup H of G. Consequently, if H is any subgroup of G, then the centre of any simple component of k^tH is contained in L.

Proof. Let n be the order of the element of $H^2(G, k^x)$ represented by the 2-cocycle t. Then there is a 1-coboundary $\lambda : G \rightarrow k^x$ such that

$$t(g, h)^n = \lambda_g \lambda_h \lambda_{gh}^{-1},$$

for every $g, h \in G$. Let F be the normal closure of $k(\lambda_g^{1/n} : g \in G)$ over k. Then t is equivalent in $H^2(G, F^x)$ to the 2-cocycle

$$t'(g, h) = t(g, h)\lambda_g^{-1/n} \lambda_h^{-1/n} \lambda_{gh}^{1/n}.$$

Clearly, $t'(g, h)^n = 1$ and thus $t'(g, h)$ is a root of unity, for every $g, h \in G$. Let Z be the subgroup of F^x generated by the values $\{t'(g, h) : g, h \in G\}$ and let G_1 be the group extension $t' : 1 \rightarrow Z \rightarrow G_1 \rightarrow G \rightarrow 1$. It is easy to see that F^tG is an epimorphic image of the group algebra FG_1, and hence by the Brauer splitting theorem there is a cyclotomic field extension L/F which splits k^tH for every subgroup H of G.

If A is a simple epimorphic image of k^tH, then $A \otimes_k L$ is an epimorphic image of $k^tH \otimes_k L$ and therefore $A \otimes_k L$ is a direct product of matrix algebras over L. Then

$$Z(A) \otimes_k L = Z(A \otimes_k L) = L^n$$

and since L/k is a Galois extension, $Z(A) \subseteq L$. This proves the lemma.
PROPOSITION 7. Let k^tG be a twisted group algebra over a field k of characteristic zero. Let L be a finite radical extension of k which splits k^tH for every finite subgroup H of G. Let A be an epimorphic image of k^tG with centre K. Assume that the index of A is a power of a prime integer p. Then there are a supersolvable subgroup H of G, a K'-central simple algebra B, and a subfield E of L, such that the following assertions hold.

(a) B is an epimorphic image of k^tH.
(b) E contains K and K'.
(c) $[E : K]$ is coprime with p.
(d) The class $[E \otimes K A]$ is the p-th component of $[E \otimes K', B]$ in $\text{Br}(E)$.

The proof of Proposition 7 requires the theory of projective characters. For the reader’s convenience we recall some of the tools used in the proof. These tools can be found in [6–8].

Given a twisted group algebra k^tG, we fix a k-basis $\{u_g : g \in G\}$ where $u_g u_g = t(g, h) u_{gh}$ for every $g, h \in G$. We also fix a radical extension L of k which splits k^tH for every subgroup H of G (Lemma 6) and consider $\{u_g : g \in G\}$ as an L-basis of L^tG.

If M is a left L^tG-module, then the projective t-representation associated to M is the map $\rho : G \to \text{GL}_L(M)$ that associates to $g \in G$ the action of u_g on M. The projective t-representation ρ satisfies the following relation:

$$\rho(g)\rho(h) = t(g, h)\rho(gh). \quad (3.1)$$

Conversely, if M is an L-vector space, then every map $\rho : G \to \text{GL}_L(M)$ satisfying (3.1) gives an L^tG-module structure on M with projective t-representation ρ. The composition of ρ with the trace map $\text{tr} : \text{GL}_L(M) \to L$ is called the projective t-character afforded by M or by ρ. Two left L^tG-modules are isomorphic if and only if they afford the same projective t-character [8, 7.1.11]. A projective t-representation is said to be irreducible if it is the projective t-representation of an irreducible L^tG-module. Likewise, a projective t-character is said to be irreducible if it is the projective t-character afforded by an irreducible L^tG-module.

Let F be a subfield of L containing k. Every irreducible projective t-character χ induces an L-linear map $\overline{\chi} : L^tG \to L$ given by $\overline{\chi}(u_g) = \chi(g)$, and there is a unique simple component A of F^tG such that $\overline{\chi}(A) \neq 0$. Conversely, for every simple component A of F^tG there is a (non-necessarily unique) irreducible projective t-character χ of G such that $\overline{\chi}(A) \neq 0$. Furthermore, if $F = Z(A)$, then the character χ such that $\overline{\chi}(A) \neq 0$ is unique, and it is given by $\chi(g) = \text{tr}(\pi(u_g))$, where $\pi : F^tG \to A$ is the projection and $\text{tr} : A \to F$ is the reduced trace of A. We will refer to this χ as the projective t-character given by the reduced trace of A.

Given F as above and χ a projective t-character, $F(\chi)$ denotes the extension of F generated by $\{\chi(g) : g \in G\}$. One says that χ is representable over F if χ is the projective t-representation associated to $M_L = L \otimes_F M$ for some left F^tG-module M. Equivalently, F splits the unique simple component of k^tG on which $\overline{\chi}$ does not vanish. Clearly, if a projective t-character is representable over F then it takes values in F, but the converse is not true in general.

Assume now that χ is irreducible, and let A be the unique simple component of F^tG such that $\overline{\chi}(A) \neq 0$. The Schur index $m_F(\chi)$ of χ over F is by definition $\text{Ind}(A)$, the index of A. Equivalently, it may be defined by $m_F(\chi) = \min\{|E : E(\chi)\} : \chi$ is representable over $E\}$ (see [8, 8.3.1] or [12, 13.4]). Furthermore, the field $F(\chi)$ is F-isomorphic (but not necessarily equal) to $Z(A)$ [8, 8.2.4], and hence there is $\sigma \in \text{Gal}(L/F)$ such that $F(\sigma \circ \chi) = Z(A)$.

Given two projective t-characters χ_1 and χ_2 afforded by left L^tG-modules M_1 and M_2, one defines the scalar product of χ_1 and χ_2 as

$$(\chi_1, \chi_2) = \dim_L \text{Hom}_{L^tG}(M_1, M_2).$$

Let us recall some properties of this product. Let χ and λ be projective t-characters afforded by modules M and N and assume that χ is irreducible.
(1) \((\chi, \lambda)\) is the number of direct summands isomorphic to \(M\) in a (any) decomposition of \(N\) as direct sum of simple \(L^iG\)-modules. In particular, if \(\lambda\) is irreducible then \((\chi, \lambda)\) is equal to 1 if \(\chi = \lambda\) and 0 otherwise.

(2) The irreducible projective \(t\)-characters are linearly independent over \(L\).

(3) If \(\lambda\) is representable over \(F\), then \(m_F(\chi)\) divides \((\chi, \lambda)\).

For a subgroup \(H\) of \(G\) and a projective \(t\)-character \(\chi\), we denote by \(t_H\) and \(\chi_H\), respectively, the restrictions of \(t\) and \(\chi\) to \(H\). Note that \(\chi_H\) is a projective \(t_H\)-character. On the other hand, if \(\theta\) is the projective \(t_H\)-character afforded by the left \(L^iH\)-module \(M\), then the projective \(t\)-character \(\theta^G\) induced from \(\theta\) to \(G\) is the character afforded by \(L^iG \otimes_{L^iH} M\) as a left \(L^iG\)-module.

Let \(k^iG_1\) and \(k^2G_2\) be two twisted group algebras. Let \(L/k\) be a field extension that splits \(k^iG_1\) and \(k^2G_2\). Let \(M_i\) be left \(L^iG_i\)-modules for \(i = 1, 2\), and let \(\chi_i\) be the corresponding characters. Then the map

\[
(t_1 \times t_2)((g_1, g_2), (h_1, h_2)) = t_1(g_1, h_1)t_2(g_2, h_2)
\]

is a 2-cocycle on \(G_1 \times G_2\). Furthermore, since

\[
L^{t_1}G_1 \otimes_L L^{t_2}G_2 \simeq L^{t_1 \times t_2}(G_1 \times G_2),
\]

we see that \(M_1 \otimes_L M_2\) is a left \(L^{t_1 \times t_2}(G_1 \times G_2)\)-module, and we denote its character by \(\chi_1 \otimes \chi_2\). In the particular case where \(G = G_1 = G_2\), we may identify \(G\) with \(\{(g, g) : g \in G\}\) and view \(M_1 \otimes_L M_2\) as a left \(L^{t_1 \times t_2}G\)-module. Note that \((t_1 \times t_2)_G\) is just the pointwise multiplication \(t_1t_2\). We denote the character \((\chi_1 \otimes \chi_2)_G\) by \(\chi_1 \cdot \chi_2\).

For the proof of Proposition 7 we need the following properties.

(4) Let \(k^iG_1, k^2G_2, \chi_1\) and \(\chi_2\) be as above.

(a) \((\chi_1 \otimes \chi_2)(g_1, g_2) = \chi_1(g_1)\chi_2(g_2)\) for each \((g_1, g_2) \in G_1 \times G_2\).

(b) If \(\lambda_i\) is a projective \(t_i\)-character \((i = 1, 2)\) then \(\chi_1 \otimes \chi_2, \lambda_1 \otimes \lambda_2 = (\chi_1, \lambda_1)(\chi_2, \lambda_2)\).

In particular, \(\chi_1 \otimes \chi_2\) is irreducible if and only if \(\chi_1\) and \(\chi_2\) are irreducible.

(c) Assume that \(\chi_1\) and \(\chi_2\) are irreducible and for \(i = 1, 2\) let \(A_i\) be a simple component of \(k^iG_i\) with centre \(F\) such that \(\chi_i(A_i) \neq 0\). Then \(\chi_i \otimes \chi_2(A_1 \otimes F \cdot A_2) \neq 0\).

(5) Let \(H\) be a subgroup of \(G\), \(\chi\) a projective \(t\)-character and \(\theta\) a projective \(t_H\)-character.

(a) \(\chi \cdot \theta^G = (\chi_H \cdot \theta)^G\); see [8, 5.5.1].

(b) (Frobenius reciprocity) If \(\chi\) and \(\theta\) are irreducible, then \((\chi_H, \theta) = (\chi, \theta^G)\); see [8, 5.6.3].

Proof of Proposition 7. We will need the following weak version of the Berman–Witt theorem [6, Section 2.21A] for ordinary characters: there exist supersolvable subgroups \(H_1, \ldots, H_n\) of \(G\), characters \(\theta_1, \ldots, \theta_n\) of the \(H_i\), with \(\theta_i(H_i) \subseteq K\) and integers \(a_1, \ldots, a_n\) such that

\[
1 = \sum a_i \theta_i^G.
\]

The group \(\text{Gal}(L/K)\) acts on the set of irreducible \(t_H\)-characters by \(\sigma \cdot \xi = \sigma \circ \xi\), \((\sigma \in \text{Gal}(L/K), \xi\) an irreducible \(t_H\)-character). Let \(R_i\) be a set of representatives for the corresponding orbits, and for each \(\xi \in R_i\) let \(\text{tr}(\xi)\) be the sum of the elements in the orbit of \(\xi\). Let \(\chi\) be an irreducible projective \(t\)-character of \(G\) such that \(\chi(G) \subseteq K\) and \(\chi(A) \neq 0\) (for example, take \(\chi\) the projective \(t\)-character given by the reduced trace of \(A\)). Note that the projective \(t_H\)-character \(\chi_H \cdot \theta_i\) takes values in \(K\) and hence \((\chi_H, \cdot \theta_i, \xi) = (\chi_H, \cdot \theta_i, \sigma \cdot \xi)\) for every \(\sigma \in \text{Gal}(L/K)\). It follows that

\[
\chi_H, \theta_i = \sum_{\xi \in R_i} b_\xi \text{tr}(\xi)
\]

where the values of \(b_\xi\) are non-negative integers. Then we have

\[
\chi = \chi \cdot 1 = \sum a_i (\chi \cdot \theta_i^G) = \sum a_i (\chi_H \cdot \theta_i)^G = \sum_{\xi \in R_i} a_i b_\xi \text{tr}(\xi)^G
\]
and thus
\[1 = (\chi, \chi) = \sum_i \sum_{\xi \in R_i} a_i b_i(\chi, \text{tr}(\xi)^G) = \sum_i \sum_{\xi \in R_i} a_i b_i[K(\xi) : K](\chi, \chi^G). \]

It follows that there are an \(i \) and a \(\xi \in R_i \) such that
\[s = (\chi_{H_i}, \xi) = (\chi, \xi^G) \text{ and } [E = K(\xi) : K] \]
are both coprime with \(p \), the unique (possible) prime divisor of the Schur index of \(\chi \) over \(K \) (equal to \(\text{Ind}(\chi) \)). Put \(H = H_i \) and let \(B \) be the unique simple component of \(k^t H \) such that \(\xi(B) \neq 0 \). If necessary, by replacing \(\xi \) with another element in its orbit we may assume that \(k(\xi) = Z(B) \) and therefore \(Z(B) \) is contained in \(E \). We are to show that the algebra \(B \) is equivalent to \(A \) over the field \(E \). To this end, consider the \(k \)-linear map \(\phi : k^{t-1} G \to k^t G \) given by \(u_g \mapsto u_g^{-1} \). Note that \(\phi \) is an anti-isomorphism of \(k \)-algebras, and so if \(\pi : k^t G \to A \) is an epimorphism of \(k \)-algebras then the map \(1^o \circ \pi \circ \phi : k^{t-1} G \to A^o \) is an epimorphism of \(k \)-algebras (here, \(A^o \) is the opposite algebra of \(A \) and \(1^o \) is the identity map on the underlying sets). Let \(\chi^{-1} \) be the projective \(t-1 \)-character given by the reduced trace of \(A^o \). Then \(\chi \otimes \chi^{-1} \) does not vanish on \(A \otimes_k A^o \), which is split, and hence \(\chi \otimes \chi^{-1} \) is representable over \(K \). This implies that \(\chi_H \otimes \chi^{-1} \) is representable over \(K \), and so the Schur index of \(\xi \otimes \chi^{-1} \) over \(E \) divides
\[(\chi_H \otimes \chi^{-1}, \xi \otimes \chi^{-1}) = (\chi_H, \xi)(\chi^{-1}, \chi^{-1}) = (\chi_H, \xi) = s. \]

Moreover, \(C = B_E \otimes_E A_E^o \) is the unique simple component of \(E^{t \times t-1}(H \times G) \) such that \((\xi \otimes \chi^{-1})(C) \neq 0 \). Since \(s \) is coprime with \(p \), the \(p \)-th component \([C]_p\) of \([C]\) is trivial. Finally, since
\[[B_E]_p[A_E^o] = [B_E \otimes_E A_E^o]_p = 1 = [A_E \otimes_E A_E^o], \]
we have \([A_E] = [B_E]_p\). This finishes the proof of Proposition 3.2. \(\square \)

To complete the proof of (1) \(\implies \) (3) (and thereby of Theorem 4), we need an additional lemma.

Lemma 8. Let \(A_1 \) and \(A_2 \) be central simple \(K \)-algebras and \(k \) a subfield of \(K \).

(a) If \(A_1 \) and \(A_2 \) are projective Schur over \(k \) then so is \(A_1 \otimes_k A_2 \).

(b) If \(A_1 \) and \(A_2 \) are radical over \(k \) then \(A_1 \otimes_k A_2 \) is equivalent in \(\text{Br}(K) \) to an algebra which is radical over \(k \). Likewise, if \(A_1 \) and \(A_2 \) are radical abelian over \(k \), then \(A_1 \otimes_k A_2 \) is equivalent in \(\text{Br}(K) \) to an algebra which is radical abelian over \(k \).

(c) If \(A = (F/K, \alpha = [t]) \) is radical over \(k \) and \(F_1/K \) is a Galois extension where \(F_1 \) is radical over \(k \) and contains \(F \), then the inflation of \(A \) to \(F_1 \) is radical over \(k \).

(d) If \(A = A_1 \) is radical over \(k \) and \(E \) is an extension of \(K \) contained in a radical extension of \(k \), then \(A_E \) is equivalent in \(\text{Br}(E) \) to an algebra which is radical over \(k \).

Proof. The proof of statement (a) is obvious.

(b) Let \(A_i = (L_i/K, \alpha_i) \) be radical over \(k \) for \(i = 1, 2 \). Then \(L = L_1 L_2 \) is a radical extension of \(k \). It follows that the inflated algebra \(B_i = (L/K, \alpha_i) \) is radical over \(k \). Clearly, \(A_i \) is equivalent to \(B_i \), \(B_1 \otimes_k B_2 \) is equivalent to \(A = (L/K, \alpha_1 \alpha_2) \) and the latter is radical over \(k \). Likewise, if we let \(A_i = (L_i/K, \alpha_i) \) be radical abelian over \(k \) for \(i = 1, 2 \), then \(L = L_1 L_2 \) is a radical extension of \(k \) and \(L/K \) is abelian. It follows that the inflated algebra \(B_i = (L/K, \alpha_i) \) is radical abelian over \(k \). Clearly, \(A_i \) is equivalent to \(B_i \), \(B_1 \otimes_k B_2 \) is equivalent to \(A = (L/K, \alpha_1 \alpha_2) \) and the latter is radical abelian over \(k \).

(c) The inflation of \(A \) to \(F_1 \) is \(\tilde{A} = (F_1/K, \tilde{\alpha}) \) where \(\tilde{\alpha}(g_{12}, g_{22}) = \tilde{t}(g_{11}, g_{22}) \) and \(g \mapsto \tilde{g} \) is the restriction homomorphism \(\text{Gal}(F_1/K) \to \text{Gal}(F/K) \) and so \(\tilde{A} \) is radical over \(k \).

(d) Assume that \(A = (F/K, \alpha) \) is radical over \(k \), and let \(F_1 \) be a radical extension of \(k \) containing \(E \) and \(F \). Then \(A_E \) is equivalent to \(B_E \) where \(B \) is the inflation of \(A \) to \(F_1 \). By part (c), \(B \) is radical over \(k \), and therefore its restriction \(B_E \) is radical over \(k \). \(\square \)
Proof of (1) \implies (3) of Theorem 4. Let A be a central simple K-algebra which is projective Schur over k, and let $k^t G \to A$ be an epimorphism of k-algebras. We show that A is radical over k.

Claim. We may assume that the index of A is a prime power.

Indeed, if p_1, \ldots, p_n are the prime divisors of the index of A (or, equivalently, of the order of the class of A in $\text{Br}(K)$), then A is equivalent to $A_1 \otimes K \otimes \cdots \otimes K A_n$ where A_i has index (and order) a power of p_i for each i. Then for each i there is a positive integer m_i such that A_i is equivalent to $A_1 \otimes \cdots \otimes A_{i-1} \otimes A_i^{\otimes m_i}$ and hence by Lemma 8(a) A_i is projective Schur over k. If (1) \implies (3) holds for algebras of prime power index, then A_i is equivalent to an algebra B_i which is radical abelian over k. Applying Lemma 8(b), one finds that $B_1 \otimes \cdots \otimes B_n$ is an equivalence to an algebra which is radical abelian over k, and the claim follows.

So let $\text{Ind}(A)$ be a power of a prime p. By Proposition 7 there exist a supersolvable subgroup H of G, a simple epimorphic image B of $k^t H$ and a field E containing $K = Z(A)$ and $Z(B)$, such that $[E : K]$ is not a multiple of p and A_E is equivalent to the pth component of B_E. Applying Theorem 3(b), we see that B is radical abelian over k and hence by Lemma 8(d) B_E is radical (non-necessarily abelian) over k. Clearly, A_E is equivalent (in $\text{Br}(E)$) to $B_E^{\otimes m}$ for some integer m and hence, by Lemma 8(b), is equivalent to an algebra $C = (F/E, \alpha)$ which is radical over k. Inflating C to the normal closure of F over K, we may assume that F/K is Galois (and radical over k).

Let $Q = \text{Gal}(F/K)$ and $T = \text{Gal}(F/E)$, and let $\text{cor} : H^2(T, F^\times) \to H^2(Q, F^\times)$ be the corestriction map. Clearly, the Galois group Q acts on $\text{Rad}_k(F)$. Since C is radical over k, $\alpha \in \text{Rad}_k(F)$ (that is, α belongs to the image of $H^2(T, \text{Rad}_k(F)) \to H^2(T, F^\times)$) and hence $\text{cor}(\alpha) \in \text{Rad}_k(F)$ by the commutativity of the following diagram.

It follows that $\text{cor}(C) = (F/K, \text{cor}(\alpha))$ is a central simple K-algebra radical over k. Now, since C is equivalent to A_E, we know that $\text{cor}(C)$ is equivalent to $A_1 \otimes \cdots \otimes A_n$ where $n = [Q : T] = [E : K]$. Furthermore, since n is coprime with p, A is equivalent to $\text{cor}(C) \otimes m$ for some integer m. By Lemma 8(b), $\text{cor}(C)^{\otimes m}$ is equivalent to a radical algebra over k. This proves that (1) \implies (3) and completes the proof of Theorem 4.

\end{proof}

References

Eli Aljadeff
Department of Mathematics
Technion-Israel Institute of Technology
32000 Haifa
Israel
aljadeff@techunix.technion.ac.il

Ángel del Río
Departamento de Matemáticas
Universidad de Murcia
30100 Murcia
Spain
adelrio@um.es